Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcn.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcn.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcn.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
knoppcn.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
knoppcn.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
knoppcn.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
9 |
1 2 4 5
|
knoppcnlem11 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ) |
10 |
1 2 3 4 5 6
|
knoppcnlem9 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) |
11 |
7 8 9 10
|
ulmcn |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ –cn→ ℂ ) ) |