Metamath Proof Explorer


Theorem knoppcn

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcn.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcn.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcn.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
knoppcn.n ( 𝜑𝑁 ∈ ℕ )
knoppcn.1 ( 𝜑𝐶 ∈ ℝ )
knoppcn.2 ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
Assertion knoppcn ( 𝜑𝑊 ∈ ( ℝ –cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 knoppcn.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcn.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcn.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 knoppcn.n ( 𝜑𝑁 ∈ ℕ )
5 knoppcn.1 ( 𝜑𝐶 ∈ ℝ )
6 knoppcn.2 ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
7 nn0uz 0 = ( ℤ ‘ 0 )
8 0zd ( 𝜑 → 0 ∈ ℤ )
9 1 2 4 5 knoppcnlem11 ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) )
10 1 2 3 4 5 6 knoppcnlem9 ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 )
11 7 8 9 10 ulmcn ( 𝜑𝑊 ∈ ( ℝ –cn→ ℂ ) )