| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem9.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppcnlem9.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppcnlem9.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 4 |
|
knoppcnlem9.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
knoppcnlem9.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
|
knoppcnlem9.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
| 7 |
1 2 4 5 6
|
knoppcnlem6 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ ℝ ) ) |
| 8 |
|
seqex |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ∈ V |
| 9 |
8
|
eldm |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ ℝ ) ↔ ∃ 𝑓 seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) |
| 10 |
7 9
|
sylib |
⊢ ( 𝜑 → ∃ 𝑓 seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) |
| 12 |
|
ulmcl |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 → 𝑓 : ℝ ⟶ ℂ ) |
| 13 |
12
|
feqmptd |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 → 𝑓 = ( 𝑤 ∈ ℝ ↦ ( 𝑓 ‘ 𝑤 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → 𝑓 = ( 𝑤 ∈ ℝ ↦ ( 𝑓 ‘ 𝑤 ) ) ) |
| 15 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 16 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → 0 ∈ ℤ ) |
| 17 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 18 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
| 19 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑤 ∈ ℝ ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 22 |
1 2 18 19 20 21
|
knoppcnlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
| 23 |
22
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
| 24 |
23
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℂ ) |
| 25 |
1 2 4 5
|
knoppcnlem8 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
| 28 |
|
seqex |
⊢ seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ V |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ V ) |
| 30 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
| 31 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 33 |
1 2 30 31 32
|
knoppcnlem7 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ) |
| 34 |
33
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ) |
| 35 |
34
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝑤 ) = ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝑤 ) ) |
| 36 |
|
eqid |
⊢ ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 38 |
37
|
seqeq3d |
⊢ ( 𝑣 = 𝑤 → seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) = seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ) |
| 39 |
38
|
fveq1d |
⊢ ( 𝑣 = 𝑤 → ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
| 40 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑤 ∈ ℝ ) |
| 41 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ∈ V ) |
| 42 |
36 39 40 41
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝑤 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
| 43 |
35 42
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝑤 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
| 44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) |
| 45 |
15 16 26 27 29 43 44
|
ulmclm |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ⇝ ( 𝑓 ‘ 𝑤 ) ) |
| 46 |
15 16 17 24 45
|
isumclim |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) ∧ 𝑤 ∈ ℝ ) → ( 𝑓 ‘ 𝑤 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 48 |
47
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → ( 𝑤 ∈ ℝ ↦ ( 𝑓 ‘ 𝑤 ) ) = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) ) |
| 49 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) ) |
| 50 |
49
|
eqcomd |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) = 𝑊 ) |
| 51 |
14 48 50
|
3eqtrd |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → 𝑓 = 𝑊 ) |
| 52 |
11 51
|
breqtrd |
⊢ ( ( 𝜑 ∧ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 ) → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) |
| 53 |
52
|
ex |
⊢ ( 𝜑 → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) ) |
| 54 |
53
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑓 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) ) |
| 55 |
10 54
|
mpd |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) |