Metamath Proof Explorer


Theorem knoppcnlem10

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem10.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcnlem10.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcnlem10.n ( 𝜑𝑁 ∈ ℕ )
knoppcnlem10.1 ( 𝜑𝐶 ∈ ℝ )
knoppcnlem10.2 ( 𝜑𝑀 ∈ ℕ0 )
Assertion knoppcnlem10 ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )

Proof

Step Hyp Ref Expression
1 knoppcnlem10.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcnlem10.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcnlem10.n ( 𝜑𝑁 ∈ ℕ )
4 knoppcnlem10.1 ( 𝜑𝐶 ∈ ℝ )
5 knoppcnlem10.2 ( 𝜑𝑀 ∈ ℕ0 )
6 simpr ( ( 𝜑𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ )
7 5 adantr ( ( 𝜑𝑧 ∈ ℝ ) → 𝑀 ∈ ℕ0 )
8 2 6 7 knoppcnlem1 ( ( 𝜑𝑧 ∈ ℝ ) → ( ( 𝐹𝑧 ) ‘ 𝑀 ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) )
9 8 mpteq2dva ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑀 ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) )
10 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
11 10 a1i ( 𝜑 → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) )
12 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
13 12 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
14 13 a1i ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) )
15 4 recnd ( 𝜑𝐶 ∈ ℂ )
16 15 5 expcld ( 𝜑 → ( 𝐶𝑀 ) ∈ ℂ )
17 11 14 16 cnmptc ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝐶𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
18 2re 2 ∈ ℝ
19 18 a1i ( 𝜑 → 2 ∈ ℝ )
20 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
21 3 20 syl ( 𝜑𝑁 ∈ ℝ )
22 19 21 remulcld ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ )
23 22 5 reexpcld ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ )
24 23 recnd ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℂ )
25 11 14 24 cnmptc ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 2 · 𝑁 ) ↑ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
26 12 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
27 26 oveq2i ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
28 13 topontopi ( TopOpen ‘ ℂfld ) ∈ Top
29 cnrest2r ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
30 28 29 ax-mp ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) )
31 27 30 eqsstri ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) )
32 11 cnmptid ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) )
33 31 32 sseldi ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
34 12 mulcn · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
35 34 a1i ( 𝜑 → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) )
36 11 25 33 35 cnmpt12f ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
37 23 adantr ( ( 𝜑𝑧 ∈ ℝ ) → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ )
38 37 6 remulcld ( ( 𝜑𝑧 ∈ ℝ ) → ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ∈ ℝ )
39 38 fmpttd ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) : ℝ ⟶ ℝ )
40 39 frnd ( 𝜑 → ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ )
41 ax-resscn ℝ ⊆ ℂ
42 41 a1i ( 𝜑 → ℝ ⊆ ℂ )
43 14 40 42 3jca ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) )
44 cnrest2 ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) )
45 43 44 syl ( 𝜑 → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) )
46 36 45 mpbid ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) )
47 46 27 eleqtrrdi ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) )
48 ssid ℂ ⊆ ℂ
49 41 48 pm3.2i ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ )
50 cncfss ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) )
51 49 50 ax-mp ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ )
52 1 dnicn 𝑇 ∈ ( ℝ –cn→ ℝ )
53 52 a1i ( 𝜑𝑇 ∈ ( ℝ –cn→ ℝ ) )
54 51 53 sseldi ( 𝜑𝑇 ∈ ( ℝ –cn→ ℂ ) )
55 13 toponrestid ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
56 12 26 55 cncfcn ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
57 49 56 ax-mp ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) )
58 54 57 eleqtrdi ( 𝜑𝑇 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
59 11 47 58 cnmpt11f ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
60 11 17 59 35 cnmpt12f ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
61 9 60 eqeltrd ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )