Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem10.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcnlem10.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcnlem10.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
knoppcnlem10.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
knoppcnlem10.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑀 ∈ ℕ0 ) |
8 |
2 6 7
|
knoppcnlem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) |
9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) ) |
10 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
12 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
13 |
12
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
15 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
16 |
15 5
|
expcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝑀 ) ∈ ℂ ) |
17 |
11 14 16
|
cnmptc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝐶 ↑ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
18 |
|
2re |
⊢ 2 ∈ ℝ |
19 |
18
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
20 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
22 |
19 21
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
23 |
22 5
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ ) |
24 |
23
|
recnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℂ ) |
25 |
11 14 24
|
cnmptc |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 2 · 𝑁 ) ↑ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
26 |
12
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
27 |
26
|
oveq2i |
⊢ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) = ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
28 |
13
|
topontopi |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
29 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
31 |
27 30
|
eqsstri |
⊢ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ⊆ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
32 |
11
|
cnmptid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
33 |
31 32
|
sselid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ 𝑧 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
34 |
12
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
36 |
11 25 33 35
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
37 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ ) |
38 |
37 6
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ∈ ℝ ) |
39 |
38
|
fmpttd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) : ℝ ⟶ ℝ ) |
40 |
39
|
frnd |
⊢ ( 𝜑 → ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ) |
41 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
42 |
41
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
43 |
14 40 42
|
3jca |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) ) |
44 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
46 |
36 45
|
mpbid |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
47 |
46 27
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
48 |
|
ssid |
⊢ ℂ ⊆ ℂ |
49 |
41 48
|
pm3.2i |
⊢ ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) |
50 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
51 |
49 50
|
ax-mp |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
52 |
1
|
dnicn |
⊢ 𝑇 ∈ ( ℝ –cn→ ℝ ) |
53 |
52
|
a1i |
⊢ ( 𝜑 → 𝑇 ∈ ( ℝ –cn→ ℝ ) ) |
54 |
51 53
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ ( ℝ –cn→ ℂ ) ) |
55 |
13
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
56 |
12 26 55
|
cncfcn |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
57 |
49 56
|
ax-mp |
⊢ ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
58 |
54 57
|
eleqtrdi |
⊢ ( 𝜑 → 𝑇 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
59 |
11 47 58
|
cnmpt11f |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
60 |
11 17 59 35
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝑧 ) ) ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
61 |
9 60
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑀 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |