Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem11.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcnlem11.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcnlem11.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
knoppcnlem11.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
8 |
1 2 5 6 7
|
knoppcnlem7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑤 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) ) |
9 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) |
10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → 𝑘 ∈ ℕ0 ) |
11 |
|
elnn0uz |
⊢ ( 𝑘 ∈ ℕ0 ↔ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
12 |
10 11
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
13 |
5
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ℕ ) |
14 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝐶 ∈ ℝ ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑤 ∈ ℝ ) |
16 |
|
elfzuz |
⊢ ( 𝑙 ∈ ( 0 ... 𝑘 ) → 𝑙 ∈ ( ℤ≥ ‘ 0 ) ) |
17 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
18 |
16 17
|
eleqtrrdi |
⊢ ( 𝑙 ∈ ( 0 ... 𝑘 ) → 𝑙 ∈ ℕ0 ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑙 ∈ ℕ0 ) |
20 |
1 2 13 14 15 19
|
knoppcnlem3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ∈ ℂ ) |
22 |
9 12 21
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
23 |
22
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) = Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) |
24 |
23
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ‘ 𝑘 ) ) = ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) ) |
25 |
8 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) ) |
26 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
27 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
29 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
30 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ℕ ) |
31 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝐶 ∈ ℝ ) |
32 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑙 ∈ ℕ0 ) |
33 |
1 2 30 31 32
|
knoppcnlem10 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝑤 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
34 |
26 28 29 33
|
fsumcn |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
35 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
36 |
|
ssid |
⊢ ℂ ⊆ ℂ |
37 |
35 36
|
pm3.2i |
⊢ ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) |
38 |
26
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
39 |
26
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
40 |
39
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
41 |
26 38 40
|
cncfcn |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
42 |
37 41
|
ax-mp |
⊢ ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
43 |
34 42
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑙 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
44 |
25 43
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ( ℝ –cn→ ℂ ) ) |
45 |
44
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ) |
46 |
|
0z |
⊢ 0 ∈ ℤ |
47 |
|
seqfn |
⊢ ( 0 ∈ ℤ → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
48 |
46 47
|
ax-mp |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) |
49 |
17
|
fneq2i |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ≥ ‘ 0 ) ) |
50 |
48 49
|
mpbir |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 |
51 |
|
dffn5 |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) ) |
52 |
50 51
|
mpbi |
⊢ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) |
53 |
52
|
feq1i |
⊢ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ↔ ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ) |
54 |
45 53
|
sylibr |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ) |