Metamath Proof Explorer


Theorem knoppcnlem11

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem11.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcnlem11.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcnlem11.n ( 𝜑𝑁 ∈ ℕ )
knoppcnlem11.1 ( 𝜑𝐶 ∈ ℝ )
Assertion knoppcnlem11 ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 knoppcnlem11.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcnlem11.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcnlem11.n ( 𝜑𝑁 ∈ ℕ )
4 knoppcnlem11.1 ( 𝜑𝐶 ∈ ℝ )
5 3 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ )
6 4 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℝ )
7 simpr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
8 1 2 5 6 7 knoppcnlem7 ( ( 𝜑𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑤 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑤 ) ) ‘ 𝑘 ) ) )
9 eqidd ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹𝑤 ) ‘ 𝑙 ) = ( ( 𝐹𝑤 ) ‘ 𝑙 ) )
10 simplr ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → 𝑘 ∈ ℕ0 )
11 elnn0uz ( 𝑘 ∈ ℕ0𝑘 ∈ ( ℤ ‘ 0 ) )
12 10 11 sylib ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → 𝑘 ∈ ( ℤ ‘ 0 ) )
13 5 ad2antrr ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ℕ )
14 6 ad2antrr ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝐶 ∈ ℝ )
15 simplr ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑤 ∈ ℝ )
16 elfzuz ( 𝑙 ∈ ( 0 ... 𝑘 ) → 𝑙 ∈ ( ℤ ‘ 0 ) )
17 nn0uz 0 = ( ℤ ‘ 0 )
18 16 17 eleqtrrdi ( 𝑙 ∈ ( 0 ... 𝑘 ) → 𝑙 ∈ ℕ0 )
19 18 adantl ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑙 ∈ ℕ0 )
20 1 2 13 14 15 19 knoppcnlem3 ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹𝑤 ) ‘ 𝑙 ) ∈ ℝ )
21 20 recnd ( ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐹𝑤 ) ‘ 𝑙 ) ∈ ℂ )
22 9 12 21 fsumser ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) = ( seq 0 ( + , ( 𝐹𝑤 ) ) ‘ 𝑘 ) )
23 22 eqcomd ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑤 ∈ ℝ ) → ( seq 0 ( + , ( 𝐹𝑤 ) ) ‘ 𝑘 ) = Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) )
24 23 mpteq2dva ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑤 ) ) ‘ 𝑘 ) ) = ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) ) )
25 8 24 eqtrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) ) )
26 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
27 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
28 27 a1i ( ( 𝜑𝑘 ∈ ℕ0 ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) )
29 fzfid ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin )
30 5 adantr ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑁 ∈ ℕ )
31 6 adantr ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝐶 ∈ ℝ )
32 18 adantl ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑙 ∈ ℕ0 )
33 1 2 30 31 32 knoppcnlem10 ( ( ( 𝜑𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝑤 ∈ ℝ ↦ ( ( 𝐹𝑤 ) ‘ 𝑙 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
34 26 28 29 33 fsumcn ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
35 ax-resscn ℝ ⊆ ℂ
36 ssid ℂ ⊆ ℂ
37 35 36 pm3.2i ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ )
38 26 tgioo2 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
39 26 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
40 39 toponrestid ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
41 26 38 40 cncfcn ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) )
42 37 41 ax-mp ( ℝ –cn→ ℂ ) = ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) )
43 34 42 eleqtrrdi ( ( 𝜑𝑘 ∈ ℕ0 ) → ( 𝑤 ∈ ℝ ↦ Σ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐹𝑤 ) ‘ 𝑙 ) ) ∈ ( ℝ –cn→ ℂ ) )
44 25 43 eqeltrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ∈ ( ℝ –cn→ ℂ ) )
45 44 fmpttd ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) )
46 0z 0 ∈ ℤ
47 seqfn ( 0 ∈ ℤ → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ ‘ 0 ) )
48 46 47 ax-mp seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ ‘ 0 )
49 17 fneq2i ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ( ℤ ‘ 0 ) )
50 48 49 mpbir seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0
51 dffn5 ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) Fn ℕ0 ↔ seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) )
52 50 51 mpbi seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) )
53 52 feq1i ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) ↔ ( 𝑘 ∈ ℕ0 ↦ ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) )
54 45 53 sylibr ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℝ –cn→ ℂ ) )