| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem11.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem11.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppcnlem11.n |
|- ( ph -> N e. NN ) |
| 4 |
|
knoppcnlem11.1 |
|- ( ph -> C e. RR ) |
| 5 |
3
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. NN ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. RR ) |
| 7 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 8 |
1 2 5 6 7
|
knoppcnlem7 |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) ) |
| 9 |
|
eqidd |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) = ( ( F ` w ) ` l ) ) |
| 10 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. NN0 ) |
| 11 |
|
elnn0uz |
|- ( k e. NN0 <-> k e. ( ZZ>= ` 0 ) ) |
| 12 |
10 11
|
sylib |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. ( ZZ>= ` 0 ) ) |
| 13 |
5
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> N e. NN ) |
| 14 |
6
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> C e. RR ) |
| 15 |
|
simplr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> w e. RR ) |
| 16 |
|
elfzuz |
|- ( l e. ( 0 ... k ) -> l e. ( ZZ>= ` 0 ) ) |
| 17 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 18 |
16 17
|
eleqtrrdi |
|- ( l e. ( 0 ... k ) -> l e. NN0 ) |
| 19 |
18
|
adantl |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> l e. NN0 ) |
| 20 |
1 2 13 14 15 19
|
knoppcnlem3 |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) e. CC ) |
| 22 |
9 12 21
|
fsumser |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) = ( seq 0 ( + , ( F ` w ) ) ` k ) ) |
| 23 |
22
|
eqcomd |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> ( seq 0 ( + , ( F ` w ) ) ` k ) = sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) |
| 24 |
23
|
mpteq2dva |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) = ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) ) |
| 25 |
8 24
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) ) |
| 26 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 27 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 28 |
27
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
| 29 |
|
fzfid |
|- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
| 30 |
5
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> N e. NN ) |
| 31 |
6
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> C e. RR ) |
| 32 |
18
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> l e. NN0 ) |
| 33 |
1 2 30 31 32
|
knoppcnlem10 |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( w e. RR |-> ( ( F ` w ) ` l ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
| 34 |
26 28 29 33
|
fsumcn |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
| 35 |
|
ax-resscn |
|- RR C_ CC |
| 36 |
|
ssid |
|- CC C_ CC |
| 37 |
35 36
|
pm3.2i |
|- ( RR C_ CC /\ CC C_ CC ) |
| 38 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 39 |
26
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 40 |
39
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 41 |
26 38 40
|
cncfcn |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
| 42 |
37 41
|
ax-mp |
|- ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
| 43 |
34 42
|
eleqtrrdi |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) e. ( RR -cn-> CC ) ) |
| 44 |
25 43
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) e. ( RR -cn-> CC ) ) |
| 45 |
44
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( RR -cn-> CC ) ) |
| 46 |
|
0z |
|- 0 e. ZZ |
| 47 |
|
seqfn |
|- ( 0 e. ZZ -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
| 48 |
46 47
|
ax-mp |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) |
| 49 |
17
|
fneq2i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
| 50 |
48 49
|
mpbir |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 |
| 51 |
|
dffn5 |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) ) |
| 52 |
50 51
|
mpbi |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) |
| 53 |
52
|
feq1i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) <-> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( RR -cn-> CC ) ) |
| 54 |
45 53
|
sylibr |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) ) |