Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem11.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppcnlem11.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppcnlem11.n |
|- ( ph -> N e. NN ) |
4 |
|
knoppcnlem11.1 |
|- ( ph -> C e. RR ) |
5 |
3
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. NN ) |
6 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. RR ) |
7 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
8 |
1 2 5 6 7
|
knoppcnlem7 |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) ) |
9 |
|
eqidd |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) = ( ( F ` w ) ` l ) ) |
10 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. NN0 ) |
11 |
|
elnn0uz |
|- ( k e. NN0 <-> k e. ( ZZ>= ` 0 ) ) |
12 |
10 11
|
sylib |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. ( ZZ>= ` 0 ) ) |
13 |
5
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> N e. NN ) |
14 |
6
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> C e. RR ) |
15 |
|
simplr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> w e. RR ) |
16 |
|
elfzuz |
|- ( l e. ( 0 ... k ) -> l e. ( ZZ>= ` 0 ) ) |
17 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
18 |
16 17
|
eleqtrrdi |
|- ( l e. ( 0 ... k ) -> l e. NN0 ) |
19 |
18
|
adantl |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> l e. NN0 ) |
20 |
1 2 13 14 15 19
|
knoppcnlem3 |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ l e. ( 0 ... k ) ) -> ( ( F ` w ) ` l ) e. CC ) |
22 |
9 12 21
|
fsumser |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) = ( seq 0 ( + , ( F ` w ) ) ` k ) ) |
23 |
22
|
eqcomd |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> ( seq 0 ( + , ( F ` w ) ) ` k ) = sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) |
24 |
23
|
mpteq2dva |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) = ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) ) |
25 |
8 24
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) ) |
26 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
27 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
28 |
27
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
29 |
|
fzfid |
|- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
30 |
5
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> N e. NN ) |
31 |
6
|
adantr |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> C e. RR ) |
32 |
18
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> l e. NN0 ) |
33 |
1 2 30 31 32
|
knoppcnlem10 |
|- ( ( ( ph /\ k e. NN0 ) /\ l e. ( 0 ... k ) ) -> ( w e. RR |-> ( ( F ` w ) ` l ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
34 |
26 28 29 33
|
fsumcn |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
35 |
|
ax-resscn |
|- RR C_ CC |
36 |
|
ssid |
|- CC C_ CC |
37 |
35 36
|
pm3.2i |
|- ( RR C_ CC /\ CC C_ CC ) |
38 |
26
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
39 |
26
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
40 |
39
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
41 |
26 38 40
|
cncfcn |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
42 |
37 41
|
ax-mp |
|- ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
43 |
34 42
|
eleqtrrdi |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> sum_ l e. ( 0 ... k ) ( ( F ` w ) ` l ) ) e. ( RR -cn-> CC ) ) |
44 |
25 43
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) e. ( RR -cn-> CC ) ) |
45 |
44
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( RR -cn-> CC ) ) |
46 |
|
0z |
|- 0 e. ZZ |
47 |
|
seqfn |
|- ( 0 e. ZZ -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
48 |
46 47
|
ax-mp |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) |
49 |
17
|
fneq2i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
50 |
48 49
|
mpbir |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 |
51 |
|
dffn5 |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) ) |
52 |
50 51
|
mpbi |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) |
53 |
52
|
feq1i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) <-> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( RR -cn-> CC ) ) |
54 |
45 53
|
sylibr |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) ) |