| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem11.t |
|
| 2 |
|
knoppcnlem11.f |
|
| 3 |
|
knoppcnlem11.n |
|
| 4 |
|
knoppcnlem11.1 |
|
| 5 |
3
|
adantr |
|
| 6 |
4
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
1 2 5 6 7
|
knoppcnlem7 |
|
| 9 |
|
eqidd |
|
| 10 |
|
simplr |
|
| 11 |
|
elnn0uz |
|
| 12 |
10 11
|
sylib |
|
| 13 |
5
|
ad2antrr |
|
| 14 |
6
|
ad2antrr |
|
| 15 |
|
simplr |
|
| 16 |
|
elfzuz |
|
| 17 |
|
nn0uz |
|
| 18 |
16 17
|
eleqtrrdi |
|
| 19 |
18
|
adantl |
|
| 20 |
1 2 13 14 15 19
|
knoppcnlem3 |
|
| 21 |
20
|
recnd |
|
| 22 |
9 12 21
|
fsumser |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
mpteq2dva |
|
| 25 |
8 24
|
eqtrd |
|
| 26 |
|
eqid |
|
| 27 |
|
retopon |
|
| 28 |
27
|
a1i |
|
| 29 |
|
fzfid |
|
| 30 |
5
|
adantr |
|
| 31 |
6
|
adantr |
|
| 32 |
18
|
adantl |
|
| 33 |
1 2 30 31 32
|
knoppcnlem10 |
|
| 34 |
26 28 29 33
|
fsumcn |
|
| 35 |
|
ax-resscn |
|
| 36 |
|
ssid |
|
| 37 |
35 36
|
pm3.2i |
|
| 38 |
|
tgioo4 |
|
| 39 |
26
|
cnfldtopon |
|
| 40 |
39
|
toponrestid |
|
| 41 |
26 38 40
|
cncfcn |
|
| 42 |
37 41
|
ax-mp |
|
| 43 |
34 42
|
eleqtrrdi |
|
| 44 |
25 43
|
eqeltrd |
|
| 45 |
44
|
fmpttd |
|
| 46 |
|
0z |
|
| 47 |
|
seqfn |
|
| 48 |
46 47
|
ax-mp |
|
| 49 |
17
|
fneq2i |
|
| 50 |
48 49
|
mpbir |
|
| 51 |
|
dffn5 |
|
| 52 |
50 51
|
mpbi |
|
| 53 |
52
|
feq1i |
|
| 54 |
45 53
|
sylibr |
|