Metamath Proof Explorer


Theorem knoppcnlem11

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem11.t T = x x + 1 2 x
knoppcnlem11.f F = y n 0 C n T 2 N n y
knoppcnlem11.n φ N
knoppcnlem11.1 φ C
Assertion knoppcnlem11 φ seq 0 f + m 0 z F z m : 0 cn

Proof

Step Hyp Ref Expression
1 knoppcnlem11.t T = x x + 1 2 x
2 knoppcnlem11.f F = y n 0 C n T 2 N n y
3 knoppcnlem11.n φ N
4 knoppcnlem11.1 φ C
5 3 adantr φ k 0 N
6 4 adantr φ k 0 C
7 simpr φ k 0 k 0
8 1 2 5 6 7 knoppcnlem7 φ k 0 seq 0 f + m 0 z F z m k = w seq 0 + F w k
9 eqidd φ k 0 w l 0 k F w l = F w l
10 simplr φ k 0 w k 0
11 elnn0uz k 0 k 0
12 10 11 sylib φ k 0 w k 0
13 5 ad2antrr φ k 0 w l 0 k N
14 6 ad2antrr φ k 0 w l 0 k C
15 simplr φ k 0 w l 0 k w
16 elfzuz l 0 k l 0
17 nn0uz 0 = 0
18 16 17 eleqtrrdi l 0 k l 0
19 18 adantl φ k 0 w l 0 k l 0
20 1 2 13 14 15 19 knoppcnlem3 φ k 0 w l 0 k F w l
21 20 recnd φ k 0 w l 0 k F w l
22 9 12 21 fsumser φ k 0 w l = 0 k F w l = seq 0 + F w k
23 22 eqcomd φ k 0 w seq 0 + F w k = l = 0 k F w l
24 23 mpteq2dva φ k 0 w seq 0 + F w k = w l = 0 k F w l
25 8 24 eqtrd φ k 0 seq 0 f + m 0 z F z m k = w l = 0 k F w l
26 eqid TopOpen fld = TopOpen fld
27 retopon topGen ran . TopOn
28 27 a1i φ k 0 topGen ran . TopOn
29 fzfid φ k 0 0 k Fin
30 5 adantr φ k 0 l 0 k N
31 6 adantr φ k 0 l 0 k C
32 18 adantl φ k 0 l 0 k l 0
33 1 2 30 31 32 knoppcnlem10 φ k 0 l 0 k w F w l topGen ran . Cn TopOpen fld
34 26 28 29 33 fsumcn φ k 0 w l = 0 k F w l topGen ran . Cn TopOpen fld
35 ax-resscn
36 ssid
37 35 36 pm3.2i
38 26 tgioo2 topGen ran . = TopOpen fld 𝑡
39 26 cnfldtopon TopOpen fld TopOn
40 39 toponrestid TopOpen fld = TopOpen fld 𝑡
41 26 38 40 cncfcn cn = topGen ran . Cn TopOpen fld
42 37 41 ax-mp cn = topGen ran . Cn TopOpen fld
43 34 42 eleqtrrdi φ k 0 w l = 0 k F w l : cn
44 25 43 eqeltrd φ k 0 seq 0 f + m 0 z F z m k : cn
45 44 fmpttd φ k 0 seq 0 f + m 0 z F z m k : 0 cn
46 0z 0
47 seqfn 0 seq 0 f + m 0 z F z m Fn 0
48 46 47 ax-mp seq 0 f + m 0 z F z m Fn 0
49 17 fneq2i seq 0 f + m 0 z F z m Fn 0 seq 0 f + m 0 z F z m Fn 0
50 48 49 mpbir seq 0 f + m 0 z F z m Fn 0
51 dffn5 seq 0 f + m 0 z F z m Fn 0 seq 0 f + m 0 z F z m = k 0 seq 0 f + m 0 z F z m k
52 50 51 mpbi seq 0 f + m 0 z F z m = k 0 seq 0 f + m 0 z F z m k
53 52 feq1i seq 0 f + m 0 z F z m : 0 cn k 0 seq 0 f + m 0 z F z m k : 0 cn
54 45 53 sylibr φ seq 0 f + m 0 z F z m : 0 cn