Metamath Proof Explorer


Theorem knoppcnlem7

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem7.t T=xx+12x
knoppcnlem7.f F=yn0CnT2 Nny
knoppcnlem7.n φN
knoppcnlem7.1 φC
knoppcnlem7.2 φM0
Assertion knoppcnlem7 φseq0f+m0zFzmM=wseq0+FwM

Proof

Step Hyp Ref Expression
1 knoppcnlem7.t T=xx+12x
2 knoppcnlem7.f F=yn0CnT2 Nny
3 knoppcnlem7.n φN
4 knoppcnlem7.1 φC
5 knoppcnlem7.2 φM0
6 reex V
7 6 a1i φV
8 elnn0uz M0M0
9 5 8 sylib φM0
10 eqid m0zFzm=m0zFzm
11 10 a1i φk0Mm0zFzm=m0zFzm
12 fveq2 z=wFz=Fw
13 12 fveq1d z=wFzm=Fwm
14 13 cbvmptv zFzm=wFwm
15 14 a1i φk0Mm=kzFzm=wFwm
16 fveq2 m=kFwm=Fwk
17 16 mpteq2dv m=kwFwm=wFwk
18 17 adantl φk0Mm=kwFwm=wFwk
19 15 18 eqtrd φk0Mm=kzFzm=wFwk
20 elfznn0 k0Mk0
21 20 adantl φk0Mk0
22 6 mptex wFwkV
23 22 a1i φk0MwFwkV
24 11 19 21 23 fvmptd φk0Mm0zFzmk=wFwk
25 7 9 24 seqof φseq0f+m0zFzmM=wseq0+FwM