| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem7.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem7.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppcnlem7.n |
|- ( ph -> N e. NN ) |
| 4 |
|
knoppcnlem7.1 |
|- ( ph -> C e. RR ) |
| 5 |
|
knoppcnlem7.2 |
|- ( ph -> M e. NN0 ) |
| 6 |
|
reex |
|- RR e. _V |
| 7 |
6
|
a1i |
|- ( ph -> RR e. _V ) |
| 8 |
|
elnn0uz |
|- ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) ) |
| 9 |
5 8
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 10 |
|
eqid |
|- ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) = ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) |
| 11 |
10
|
a1i |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) = ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) |
| 12 |
|
fveq2 |
|- ( z = w -> ( F ` z ) = ( F ` w ) ) |
| 13 |
12
|
fveq1d |
|- ( z = w -> ( ( F ` z ) ` m ) = ( ( F ` w ) ` m ) ) |
| 14 |
13
|
cbvmptv |
|- ( z e. RR |-> ( ( F ` z ) ` m ) ) = ( w e. RR |-> ( ( F ` w ) ` m ) ) |
| 15 |
14
|
a1i |
|- ( ( ( ph /\ k e. ( 0 ... M ) ) /\ m = k ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) = ( w e. RR |-> ( ( F ` w ) ` m ) ) ) |
| 16 |
|
fveq2 |
|- ( m = k -> ( ( F ` w ) ` m ) = ( ( F ` w ) ` k ) ) |
| 17 |
16
|
mpteq2dv |
|- ( m = k -> ( w e. RR |-> ( ( F ` w ) ` m ) ) = ( w e. RR |-> ( ( F ` w ) ` k ) ) ) |
| 18 |
17
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ... M ) ) /\ m = k ) -> ( w e. RR |-> ( ( F ` w ) ` m ) ) = ( w e. RR |-> ( ( F ` w ) ` k ) ) ) |
| 19 |
15 18
|
eqtrd |
|- ( ( ( ph /\ k e. ( 0 ... M ) ) /\ m = k ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) = ( w e. RR |-> ( ( F ` w ) ` k ) ) ) |
| 20 |
|
elfznn0 |
|- ( k e. ( 0 ... M ) -> k e. NN0 ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> k e. NN0 ) |
| 22 |
6
|
mptex |
|- ( w e. RR |-> ( ( F ` w ) ` k ) ) e. _V |
| 23 |
22
|
a1i |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( w e. RR |-> ( ( F ` w ) ` k ) ) e. _V ) |
| 24 |
11 19 21 23
|
fvmptd |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ` k ) = ( w e. RR |-> ( ( F ` w ) ` k ) ) ) |
| 25 |
7 9 24
|
seqof |
|- ( ph -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` M ) = ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` M ) ) ) |