Step |
Hyp |
Ref |
Expression |
1 |
|
seqof.1 |
|- ( ph -> A e. V ) |
2 |
|
seqof.2 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
3 |
|
seqof.3 |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = ( z e. A |-> ( G ` x ) ) ) |
4 |
|
fvex |
|- ( G ` x ) e. _V |
5 |
4
|
rgenw |
|- A. z e. A ( G ` x ) e. _V |
6 |
|
eqid |
|- ( z e. A |-> ( G ` x ) ) = ( z e. A |-> ( G ` x ) ) |
7 |
6
|
fnmpt |
|- ( A. z e. A ( G ` x ) e. _V -> ( z e. A |-> ( G ` x ) ) Fn A ) |
8 |
5 7
|
mp1i |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( z e. A |-> ( G ` x ) ) Fn A ) |
9 |
3
|
fneq1d |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( ( F ` x ) Fn A <-> ( z e. A |-> ( G ` x ) ) Fn A ) ) |
10 |
8 9
|
mpbird |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) Fn A ) |
11 |
|
fvex |
|- ( F ` x ) e. _V |
12 |
|
fneq1 |
|- ( z = ( F ` x ) -> ( z Fn A <-> ( F ` x ) Fn A ) ) |
13 |
11 12
|
elab |
|- ( ( F ` x ) e. { z | z Fn A } <-> ( F ` x ) Fn A ) |
14 |
10 13
|
sylibr |
|- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. { z | z Fn A } ) |
15 |
|
simprl |
|- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> x Fn A ) |
16 |
|
simprr |
|- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> y Fn A ) |
17 |
1
|
adantr |
|- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> A e. V ) |
18 |
|
inidm |
|- ( A i^i A ) = A |
19 |
15 16 17 17 18
|
offn |
|- ( ( ph /\ ( x Fn A /\ y Fn A ) ) -> ( x oF .+ y ) Fn A ) |
20 |
19
|
ex |
|- ( ph -> ( ( x Fn A /\ y Fn A ) -> ( x oF .+ y ) Fn A ) ) |
21 |
|
vex |
|- x e. _V |
22 |
|
fneq1 |
|- ( z = x -> ( z Fn A <-> x Fn A ) ) |
23 |
21 22
|
elab |
|- ( x e. { z | z Fn A } <-> x Fn A ) |
24 |
|
vex |
|- y e. _V |
25 |
|
fneq1 |
|- ( z = y -> ( z Fn A <-> y Fn A ) ) |
26 |
24 25
|
elab |
|- ( y e. { z | z Fn A } <-> y Fn A ) |
27 |
23 26
|
anbi12i |
|- ( ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) <-> ( x Fn A /\ y Fn A ) ) |
28 |
|
ovex |
|- ( x oF .+ y ) e. _V |
29 |
|
fneq1 |
|- ( z = ( x oF .+ y ) -> ( z Fn A <-> ( x oF .+ y ) Fn A ) ) |
30 |
28 29
|
elab |
|- ( ( x oF .+ y ) e. { z | z Fn A } <-> ( x oF .+ y ) Fn A ) |
31 |
20 27 30
|
3imtr4g |
|- ( ph -> ( ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) -> ( x oF .+ y ) e. { z | z Fn A } ) ) |
32 |
31
|
imp |
|- ( ( ph /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( x oF .+ y ) e. { z | z Fn A } ) |
33 |
2 14 32
|
seqcl |
|- ( ph -> ( seq M ( oF .+ , F ) ` N ) e. { z | z Fn A } ) |
34 |
|
fvex |
|- ( seq M ( oF .+ , F ) ` N ) e. _V |
35 |
|
fneq1 |
|- ( z = ( seq M ( oF .+ , F ) ` N ) -> ( z Fn A <-> ( seq M ( oF .+ , F ) ` N ) Fn A ) ) |
36 |
34 35
|
elab |
|- ( ( seq M ( oF .+ , F ) ` N ) e. { z | z Fn A } <-> ( seq M ( oF .+ , F ) ` N ) Fn A ) |
37 |
33 36
|
sylib |
|- ( ph -> ( seq M ( oF .+ , F ) ` N ) Fn A ) |
38 |
|
dffn5 |
|- ( ( seq M ( oF .+ , F ) ` N ) Fn A <-> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) ) |
39 |
37 38
|
sylib |
|- ( ph -> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) ) |
40 |
|
fveq1 |
|- ( w = ( seq M ( oF .+ , F ) ` N ) -> ( w ` z ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
41 |
|
eqid |
|- ( w e. _V |-> ( w ` z ) ) = ( w e. _V |-> ( w ` z ) ) |
42 |
|
fvex |
|- ( ( seq M ( oF .+ , F ) ` N ) ` z ) e. _V |
43 |
40 41 42
|
fvmpt |
|- ( ( seq M ( oF .+ , F ) ` N ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
44 |
34 43
|
mp1i |
|- ( ( ph /\ z e. A ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) |
45 |
32
|
adantlr |
|- ( ( ( ph /\ z e. A ) /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( x oF .+ y ) e. { z | z Fn A } ) |
46 |
14
|
adantlr |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. { z | z Fn A } ) |
47 |
2
|
adantr |
|- ( ( ph /\ z e. A ) -> N e. ( ZZ>= ` M ) ) |
48 |
|
eqidd |
|- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( x ` z ) = ( x ` z ) ) |
49 |
|
eqidd |
|- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( y ` z ) = ( y ` z ) ) |
50 |
15 16 17 17 18 48 49
|
ofval |
|- ( ( ( ph /\ ( x Fn A /\ y Fn A ) ) /\ z e. A ) -> ( ( x oF .+ y ) ` z ) = ( ( x ` z ) .+ ( y ` z ) ) ) |
51 |
50
|
an32s |
|- ( ( ( ph /\ z e. A ) /\ ( x Fn A /\ y Fn A ) ) -> ( ( x oF .+ y ) ` z ) = ( ( x ` z ) .+ ( y ` z ) ) ) |
52 |
|
fveq1 |
|- ( w = ( x oF .+ y ) -> ( w ` z ) = ( ( x oF .+ y ) ` z ) ) |
53 |
|
fvex |
|- ( ( x oF .+ y ) ` z ) e. _V |
54 |
52 41 53
|
fvmpt |
|- ( ( x oF .+ y ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( x oF .+ y ) ` z ) ) |
55 |
28 54
|
ax-mp |
|- ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( x oF .+ y ) ` z ) |
56 |
|
fveq1 |
|- ( w = x -> ( w ` z ) = ( x ` z ) ) |
57 |
|
fvex |
|- ( x ` z ) e. _V |
58 |
56 41 57
|
fvmpt |
|- ( x e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` x ) = ( x ` z ) ) |
59 |
58
|
elv |
|- ( ( w e. _V |-> ( w ` z ) ) ` x ) = ( x ` z ) |
60 |
|
fveq1 |
|- ( w = y -> ( w ` z ) = ( y ` z ) ) |
61 |
|
fvex |
|- ( y ` z ) e. _V |
62 |
60 41 61
|
fvmpt |
|- ( y e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` y ) = ( y ` z ) ) |
63 |
62
|
elv |
|- ( ( w e. _V |-> ( w ` z ) ) ` y ) = ( y ` z ) |
64 |
59 63
|
oveq12i |
|- ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) = ( ( x ` z ) .+ ( y ` z ) ) |
65 |
51 55 64
|
3eqtr4g |
|- ( ( ( ph /\ z e. A ) /\ ( x Fn A /\ y Fn A ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) ) |
66 |
27 65
|
sylan2b |
|- ( ( ( ph /\ z e. A ) /\ ( x e. { z | z Fn A } /\ y e. { z | z Fn A } ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( x oF .+ y ) ) = ( ( ( w e. _V |-> ( w ` z ) ) ` x ) .+ ( ( w e. _V |-> ( w ` z ) ) ` y ) ) ) |
67 |
|
fveq1 |
|- ( w = ( F ` x ) -> ( w ` z ) = ( ( F ` x ) ` z ) ) |
68 |
|
fvex |
|- ( ( F ` x ) ` z ) e. _V |
69 |
67 41 68
|
fvmpt |
|- ( ( F ` x ) e. _V -> ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( ( F ` x ) ` z ) ) |
70 |
11 69
|
ax-mp |
|- ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( ( F ` x ) ` z ) |
71 |
3
|
adantlr |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( F ` x ) = ( z e. A |-> ( G ` x ) ) ) |
72 |
71
|
fveq1d |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) ` z ) = ( ( z e. A |-> ( G ` x ) ) ` z ) ) |
73 |
|
simplr |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> z e. A ) |
74 |
6
|
fvmpt2 |
|- ( ( z e. A /\ ( G ` x ) e. _V ) -> ( ( z e. A |-> ( G ` x ) ) ` z ) = ( G ` x ) ) |
75 |
73 4 74
|
sylancl |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( z e. A |-> ( G ` x ) ) ` z ) = ( G ` x ) ) |
76 |
72 75
|
eqtrd |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( F ` x ) ` z ) = ( G ` x ) ) |
77 |
70 76
|
eqtrid |
|- ( ( ( ph /\ z e. A ) /\ x e. ( M ... N ) ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( F ` x ) ) = ( G ` x ) ) |
78 |
45 46 47 66 77
|
seqhomo |
|- ( ( ph /\ z e. A ) -> ( ( w e. _V |-> ( w ` z ) ) ` ( seq M ( oF .+ , F ) ` N ) ) = ( seq M ( .+ , G ) ` N ) ) |
79 |
44 78
|
eqtr3d |
|- ( ( ph /\ z e. A ) -> ( ( seq M ( oF .+ , F ) ` N ) ` z ) = ( seq M ( .+ , G ) ` N ) ) |
80 |
79
|
mpteq2dva |
|- ( ph -> ( z e. A |-> ( ( seq M ( oF .+ , F ) ` N ) ` z ) ) = ( z e. A |-> ( seq M ( .+ , G ) ` N ) ) ) |
81 |
39 80
|
eqtrd |
|- ( ph -> ( seq M ( oF .+ , F ) ` N ) = ( z e. A |-> ( seq M ( .+ , G ) ` N ) ) ) |