Metamath Proof Explorer


Theorem knoppcnlem10

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem10.t T = x x + 1 2 x
knoppcnlem10.f F = y n 0 C n T 2 N n y
knoppcnlem10.n φ N
knoppcnlem10.1 φ C
knoppcnlem10.2 φ M 0
Assertion knoppcnlem10 φ z F z M topGen ran . Cn TopOpen fld

Proof

Step Hyp Ref Expression
1 knoppcnlem10.t T = x x + 1 2 x
2 knoppcnlem10.f F = y n 0 C n T 2 N n y
3 knoppcnlem10.n φ N
4 knoppcnlem10.1 φ C
5 knoppcnlem10.2 φ M 0
6 simpr φ z z
7 5 adantr φ z M 0
8 2 6 7 knoppcnlem1 φ z F z M = C M T 2 N M z
9 8 mpteq2dva φ z F z M = z C M T 2 N M z
10 retopon topGen ran . TopOn
11 10 a1i φ topGen ran . TopOn
12 eqid TopOpen fld = TopOpen fld
13 12 cnfldtopon TopOpen fld TopOn
14 13 a1i φ TopOpen fld TopOn
15 4 recnd φ C
16 15 5 expcld φ C M
17 11 14 16 cnmptc φ z C M topGen ran . Cn TopOpen fld
18 2re 2
19 18 a1i φ 2
20 nnre N N
21 3 20 syl φ N
22 19 21 remulcld φ 2 N
23 22 5 reexpcld φ 2 N M
24 23 recnd φ 2 N M
25 11 14 24 cnmptc φ z 2 N M topGen ran . Cn TopOpen fld
26 12 tgioo2 topGen ran . = TopOpen fld 𝑡
27 26 oveq2i topGen ran . Cn topGen ran . = topGen ran . Cn TopOpen fld 𝑡
28 13 topontopi TopOpen fld Top
29 cnrest2r TopOpen fld Top topGen ran . Cn TopOpen fld 𝑡 topGen ran . Cn TopOpen fld
30 28 29 ax-mp topGen ran . Cn TopOpen fld 𝑡 topGen ran . Cn TopOpen fld
31 27 30 eqsstri topGen ran . Cn topGen ran . topGen ran . Cn TopOpen fld
32 11 cnmptid φ z z topGen ran . Cn topGen ran .
33 31 32 sselid φ z z topGen ran . Cn TopOpen fld
34 12 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
35 34 a1i φ × TopOpen fld × t TopOpen fld Cn TopOpen fld
36 11 25 33 35 cnmpt12f φ z 2 N M z topGen ran . Cn TopOpen fld
37 23 adantr φ z 2 N M
38 37 6 remulcld φ z 2 N M z
39 38 fmpttd φ z 2 N M z :
40 39 frnd φ ran z 2 N M z
41 ax-resscn
42 41 a1i φ
43 14 40 42 3jca φ TopOpen fld TopOn ran z 2 N M z
44 cnrest2 TopOpen fld TopOn ran z 2 N M z z 2 N M z topGen ran . Cn TopOpen fld z 2 N M z topGen ran . Cn TopOpen fld 𝑡
45 43 44 syl φ z 2 N M z topGen ran . Cn TopOpen fld z 2 N M z topGen ran . Cn TopOpen fld 𝑡
46 36 45 mpbid φ z 2 N M z topGen ran . Cn TopOpen fld 𝑡
47 46 27 eleqtrrdi φ z 2 N M z topGen ran . Cn topGen ran .
48 ssid
49 41 48 pm3.2i
50 cncfss cn cn
51 49 50 ax-mp cn cn
52 1 dnicn T : cn
53 52 a1i φ T : cn
54 51 53 sselid φ T : cn
55 13 toponrestid TopOpen fld = TopOpen fld 𝑡
56 12 26 55 cncfcn cn = topGen ran . Cn TopOpen fld
57 49 56 ax-mp cn = topGen ran . Cn TopOpen fld
58 54 57 eleqtrdi φ T topGen ran . Cn TopOpen fld
59 11 47 58 cnmpt11f φ z T 2 N M z topGen ran . Cn TopOpen fld
60 11 17 59 35 cnmpt12f φ z C M T 2 N M z topGen ran . Cn TopOpen fld
61 9 60 eqeltrd φ z F z M topGen ran . Cn TopOpen fld