Metamath Proof Explorer


Theorem knoppcnlem1

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses knoppcnlem1.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcnlem1.2 ( 𝜑𝐴 ∈ ℝ )
knoppcnlem1.3 ( 𝜑𝑀 ∈ ℕ0 )
Assertion knoppcnlem1 ( 𝜑 → ( ( 𝐹𝐴 ) ‘ 𝑀 ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 knoppcnlem1.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
2 knoppcnlem1.2 ( 𝜑𝐴 ∈ ℝ )
3 knoppcnlem1.3 ( 𝜑𝑀 ∈ ℕ0 )
4 oveq2 ( 𝑦 = 𝐴 → ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) = ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) )
5 4 fveq2d ( 𝑦 = 𝐴 → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) = ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) )
6 5 oveq2d ( 𝑦 = 𝐴 → ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) = ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) )
7 6 mpteq2dv ( 𝑦 = 𝐴 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) )
8 nn0ex 0 ∈ V
9 8 mptex ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ∈ V
10 9 a1i ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ∈ V )
11 1 7 2 10 fvmptd3 ( 𝜑 → ( 𝐹𝐴 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) )
12 oveq2 ( 𝑛 = 𝑀 → ( 𝐶𝑛 ) = ( 𝐶𝑀 ) )
13 oveq2 ( 𝑛 = 𝑀 → ( ( 2 · 𝑁 ) ↑ 𝑛 ) = ( ( 2 · 𝑁 ) ↑ 𝑀 ) )
14 13 fvoveq1d ( 𝑛 = 𝑀 → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) = ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) )
15 12 14 oveq12d ( 𝑛 = 𝑀 → ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) )
16 15 adantl ( ( 𝜑𝑛 = 𝑀 ) → ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) )
17 ovexd ( 𝜑 → ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ∈ V )
18 11 16 3 17 fvmptd ( 𝜑 → ( ( 𝐹𝐴 ) ‘ 𝑀 ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) )