Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem1.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
2 |
|
knoppcnlem1.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
knoppcnlem1.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) = ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) = ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) = ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) |
7 |
6
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ) |
8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
9 |
8
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ∈ V ) |
11 |
1 7 2 10
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐶 ↑ 𝑛 ) = ( 𝐶 ↑ 𝑀 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( ( 2 · 𝑁 ) ↑ 𝑛 ) = ( ( 2 · 𝑁 ) ↑ 𝑀 ) ) |
14 |
13
|
fvoveq1d |
⊢ ( 𝑛 = 𝑀 → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) = ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) |
15 |
12 14
|
oveq12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝐴 ) ) ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ) |
17 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ∈ V ) |
18 |
11 16 3 17
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑀 ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ) |