Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem6.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcnlem6.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcnlem6.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
knoppcnlem6.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
knoppcnlem6.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
7 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
8 |
|
reex |
⊢ ℝ ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
10 |
1 2 3 4
|
knoppcnlem5 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) ) |
11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
12 |
11
|
mptex |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ∈ V ) |
14 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑚 = 𝑘 ) → 𝑚 = 𝑘 ) |
17 |
16
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑚 = 𝑘 ) → ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) = ( ( abs ‘ 𝐶 ) ↑ 𝑘 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
19 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐶 ) ↑ 𝑘 ) ∈ V ) |
20 |
15 17 18 19
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ‘ 𝑘 ) = ( ( abs ‘ 𝐶 ) ↑ 𝑘 ) ) |
21 |
4
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
22 |
21
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
24 |
23 18
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐶 ) ↑ 𝑘 ) ∈ ℝ ) |
25 |
20 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ‘ 𝑘 ) ∈ ℝ ) |
26 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑚 = 𝑘 ) → 𝑚 = 𝑘 ) |
29 |
28
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑚 = 𝑘 ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) |
30 |
29
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑚 = 𝑘 ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
31 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → 𝑘 ∈ ℕ0 ) |
32 |
8
|
mptex |
⊢ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ V |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ V ) |
34 |
27 30 31 33
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑧 = 𝑤 ) → 𝑧 = 𝑤 ) |
36 |
35
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑧 = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
37 |
36
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) ∧ 𝑧 = 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑘 ) ) |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → 𝑤 ∈ ℝ ) |
39 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑘 ) ∈ V ) |
40 |
34 37 38 39
|
fvmptd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑘 ) ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑘 ) ) ) |
42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → 𝑁 ∈ ℕ ) |
43 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
44 |
1 2 42 43 38 31
|
knoppcnlem4 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑘 ) ) ≤ ( ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ‘ 𝑘 ) ) |
45 |
41 44
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑤 ∈ ℝ ) ) → ( abs ‘ ( ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ‘ 𝑘 ) ‘ 𝑤 ) ) ≤ ( ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ‘ 𝑘 ) ) |
46 |
22
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℂ ) |
47 |
|
absidm |
⊢ ( 𝐶 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐶 ) ) = ( abs ‘ 𝐶 ) ) |
48 |
21 47
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝐶 ) ) = ( abs ‘ 𝐶 ) ) |
49 |
48 5
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝐶 ) ) < 1 ) |
50 |
46 49 20
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐶 ) ) ) ) |
51 |
|
seqex |
⊢ seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) ∈ V |
52 |
|
ovex |
⊢ ( 1 / ( 1 − ( abs ‘ 𝐶 ) ) ) ∈ V |
53 |
51 52
|
breldm |
⊢ ( seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝐶 ) ) ) → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) ∈ dom ⇝ ) |
54 |
50 53
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( abs ‘ 𝐶 ) ↑ 𝑚 ) ) ) ∈ dom ⇝ ) |
55 |
6 7 9 10 13 25 45 54
|
mtest |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ∈ dom ( ⇝𝑢 ‘ ℝ ) ) |