Metamath Proof Explorer


Theorem knoppcnlem5

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem5.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcnlem5.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcnlem5.n ( 𝜑𝑁 ∈ ℕ )
knoppcnlem5.1 ( 𝜑𝐶 ∈ ℝ )
Assertion knoppcnlem5 ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) )

Proof

Step Hyp Ref Expression
1 knoppcnlem5.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcnlem5.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcnlem5.n ( 𝜑𝑁 ∈ ℕ )
4 knoppcnlem5.1 ( 𝜑𝐶 ∈ ℝ )
5 3 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑁 ∈ ℕ )
6 4 ad2antrr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝐶 ∈ ℝ )
7 simpr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ )
8 simplr ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑚 ∈ ℕ0 )
9 1 2 5 6 7 8 knoppcnlem3 ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹𝑧 ) ‘ 𝑚 ) ∈ ℝ )
10 9 recnd ( ( ( 𝜑𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹𝑧 ) ‘ 𝑚 ) ∈ ℂ )
11 10 fmpttd ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ )
12 cnex ℂ ∈ V
13 reex ℝ ∈ V
14 12 13 pm3.2i ( ℂ ∈ V ∧ ℝ ∈ V )
15 elmapg ( ( ℂ ∈ V ∧ ℝ ∈ V ) → ( ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ ) )
16 14 15 ax-mp ( ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ )
17 11 16 sylibr ( ( 𝜑𝑚 ∈ ℕ0 ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) )
18 17 fmpttd ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) )