Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem5.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppcnlem5.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppcnlem5.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
knoppcnlem5.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑁 ∈ ℕ ) |
6 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
8 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → 𝑚 ∈ ℕ0 ) |
9 |
1 2 5 6 7 8
|
knoppcnlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ∈ ℂ ) |
11 |
10
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ ) |
12 |
|
cnex |
⊢ ℂ ∈ V |
13 |
|
reex |
⊢ ℝ ∈ V |
14 |
12 13
|
pm3.2i |
⊢ ( ℂ ∈ V ∧ ℝ ∈ V ) |
15 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ ℝ ∈ V ) → ( ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) ↔ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) : ℝ ⟶ ℂ ) |
17 |
11 16
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ∈ ( ℂ ↑m ℝ ) ) |
18 |
17
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) ) |