Metamath Proof Explorer


Theorem knoppcnlem5

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem5.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppcnlem5.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppcnlem5.n
|- ( ph -> N e. NN )
knoppcnlem5.1
|- ( ph -> C e. RR )
Assertion knoppcnlem5
|- ( ph -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) : NN0 --> ( CC ^m RR ) )

Proof

Step Hyp Ref Expression
1 knoppcnlem5.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppcnlem5.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppcnlem5.n
 |-  ( ph -> N e. NN )
4 knoppcnlem5.1
 |-  ( ph -> C e. RR )
5 3 ad2antrr
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> N e. NN )
6 4 ad2antrr
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> C e. RR )
7 simpr
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> z e. RR )
8 simplr
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> m e. NN0 )
9 1 2 5 6 7 8 knoppcnlem3
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> ( ( F ` z ) ` m ) e. RR )
10 9 recnd
 |-  ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> ( ( F ` z ) ` m ) e. CC )
11 10 fmpttd
 |-  ( ( ph /\ m e. NN0 ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC )
12 cnex
 |-  CC e. _V
13 reex
 |-  RR e. _V
14 12 13 pm3.2i
 |-  ( CC e. _V /\ RR e. _V )
15 elmapg
 |-  ( ( CC e. _V /\ RR e. _V ) -> ( ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) <-> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC ) )
16 14 15 ax-mp
 |-  ( ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) <-> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC )
17 11 16 sylibr
 |-  ( ( ph /\ m e. NN0 ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) )
18 17 fmpttd
 |-  ( ph -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) : NN0 --> ( CC ^m RR ) )