| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem5.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem5.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppcnlem5.n |
|- ( ph -> N e. NN ) |
| 4 |
|
knoppcnlem5.1 |
|- ( ph -> C e. RR ) |
| 5 |
3
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> N e. NN ) |
| 6 |
4
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> C e. RR ) |
| 7 |
|
simpr |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> z e. RR ) |
| 8 |
|
simplr |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> m e. NN0 ) |
| 9 |
1 2 5 6 7 8
|
knoppcnlem3 |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> ( ( F ` z ) ` m ) e. RR ) |
| 10 |
9
|
recnd |
|- ( ( ( ph /\ m e. NN0 ) /\ z e. RR ) -> ( ( F ` z ) ` m ) e. CC ) |
| 11 |
10
|
fmpttd |
|- ( ( ph /\ m e. NN0 ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC ) |
| 12 |
|
cnex |
|- CC e. _V |
| 13 |
|
reex |
|- RR e. _V |
| 14 |
12 13
|
pm3.2i |
|- ( CC e. _V /\ RR e. _V ) |
| 15 |
|
elmapg |
|- ( ( CC e. _V /\ RR e. _V ) -> ( ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) <-> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC ) ) |
| 16 |
14 15
|
ax-mp |
|- ( ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) <-> ( z e. RR |-> ( ( F ` z ) ` m ) ) : RR --> CC ) |
| 17 |
11 16
|
sylibr |
|- ( ( ph /\ m e. NN0 ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) e. ( CC ^m RR ) ) |
| 18 |
17
|
fmpttd |
|- ( ph -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) : NN0 --> ( CC ^m RR ) ) |