Metamath Proof Explorer


Theorem knoppcnlem5

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem5.t T = x x + 1 2 x
knoppcnlem5.f F = y n 0 C n T 2 N n y
knoppcnlem5.n φ N
knoppcnlem5.1 φ C
Assertion knoppcnlem5 φ m 0 z F z m : 0

Proof

Step Hyp Ref Expression
1 knoppcnlem5.t T = x x + 1 2 x
2 knoppcnlem5.f F = y n 0 C n T 2 N n y
3 knoppcnlem5.n φ N
4 knoppcnlem5.1 φ C
5 3 ad2antrr φ m 0 z N
6 4 ad2antrr φ m 0 z C
7 simpr φ m 0 z z
8 simplr φ m 0 z m 0
9 1 2 5 6 7 8 knoppcnlem3 φ m 0 z F z m
10 9 recnd φ m 0 z F z m
11 10 fmpttd φ m 0 z F z m :
12 cnex V
13 reex V
14 12 13 pm3.2i V V
15 elmapg V V z F z m z F z m :
16 14 15 ax-mp z F z m z F z m :
17 11 16 sylibr φ m 0 z F z m
18 17 fmpttd φ m 0 z F z m : 0