Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem6.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppcnlem6.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppcnlem6.n |
|- ( ph -> N e. NN ) |
4 |
|
knoppcnlem6.1 |
|- ( ph -> C e. RR ) |
5 |
|
knoppcnlem6.2 |
|- ( ph -> ( abs ` C ) < 1 ) |
6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
7 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
8 |
|
reex |
|- RR e. _V |
9 |
8
|
a1i |
|- ( ph -> RR e. _V ) |
10 |
1 2 3 4
|
knoppcnlem5 |
|- ( ph -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) : NN0 --> ( CC ^m RR ) ) |
11 |
|
nn0ex |
|- NN0 e. _V |
12 |
11
|
mptex |
|- ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) e. _V |
13 |
12
|
a1i |
|- ( ph -> ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) e. _V ) |
14 |
|
eqid |
|- ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) = ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) |
15 |
14
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) = ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) |
16 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ m = k ) -> m = k ) |
17 |
16
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ m = k ) -> ( ( abs ` C ) ^ m ) = ( ( abs ` C ) ^ k ) ) |
18 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
19 |
|
ovexd |
|- ( ( ph /\ k e. NN0 ) -> ( ( abs ` C ) ^ k ) e. _V ) |
20 |
15 17 18 19
|
fvmptd |
|- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` k ) = ( ( abs ` C ) ^ k ) ) |
21 |
4
|
recnd |
|- ( ph -> C e. CC ) |
22 |
21
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
23 |
22
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( abs ` C ) e. RR ) |
24 |
23 18
|
reexpcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( abs ` C ) ^ k ) e. RR ) |
25 |
20 24
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` k ) e. RR ) |
26 |
|
eqid |
|- ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) = ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) |
27 |
26
|
a1i |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) = ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) |
28 |
|
simpr |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ m = k ) -> m = k ) |
29 |
28
|
fveq2d |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ m = k ) -> ( ( F ` z ) ` m ) = ( ( F ` z ) ` k ) ) |
30 |
29
|
mpteq2dv |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ m = k ) -> ( z e. RR |-> ( ( F ` z ) ` m ) ) = ( z e. RR |-> ( ( F ` z ) ` k ) ) ) |
31 |
18
|
adantrr |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> k e. NN0 ) |
32 |
8
|
mptex |
|- ( z e. RR |-> ( ( F ` z ) ` k ) ) e. _V |
33 |
32
|
a1i |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( z e. RR |-> ( ( F ` z ) ` k ) ) e. _V ) |
34 |
27 30 31 33
|
fvmptd |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ` k ) = ( z e. RR |-> ( ( F ` z ) ` k ) ) ) |
35 |
|
simpr |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ z = w ) -> z = w ) |
36 |
35
|
fveq2d |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ z = w ) -> ( F ` z ) = ( F ` w ) ) |
37 |
36
|
fveq1d |
|- ( ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) /\ z = w ) -> ( ( F ` z ) ` k ) = ( ( F ` w ) ` k ) ) |
38 |
|
simprr |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> w e. RR ) |
39 |
|
fvexd |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( ( F ` w ) ` k ) e. _V ) |
40 |
34 37 38 39
|
fvmptd |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( ( ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ` k ) ` w ) = ( ( F ` w ) ` k ) ) |
41 |
40
|
fveq2d |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( abs ` ( ( ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ` k ) ` w ) ) = ( abs ` ( ( F ` w ) ` k ) ) ) |
42 |
3
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> N e. NN ) |
43 |
4
|
adantr |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> C e. RR ) |
44 |
1 2 42 43 38 31
|
knoppcnlem4 |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( abs ` ( ( F ` w ) ` k ) ) <_ ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` k ) ) |
45 |
41 44
|
eqbrtrd |
|- ( ( ph /\ ( k e. NN0 /\ w e. RR ) ) -> ( abs ` ( ( ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ` k ) ` w ) ) <_ ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` k ) ) |
46 |
22
|
recnd |
|- ( ph -> ( abs ` C ) e. CC ) |
47 |
|
absidm |
|- ( C e. CC -> ( abs ` ( abs ` C ) ) = ( abs ` C ) ) |
48 |
21 47
|
syl |
|- ( ph -> ( abs ` ( abs ` C ) ) = ( abs ` C ) ) |
49 |
48 5
|
eqbrtrd |
|- ( ph -> ( abs ` ( abs ` C ) ) < 1 ) |
50 |
46 49 20
|
geolim |
|- ( ph -> seq 0 ( + , ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) ~~> ( 1 / ( 1 - ( abs ` C ) ) ) ) |
51 |
|
seqex |
|- seq 0 ( + , ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) e. _V |
52 |
|
ovex |
|- ( 1 / ( 1 - ( abs ` C ) ) ) e. _V |
53 |
51 52
|
breldm |
|- ( seq 0 ( + , ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) ~~> ( 1 / ( 1 - ( abs ` C ) ) ) -> seq 0 ( + , ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) e. dom ~~> ) |
54 |
50 53
|
syl |
|- ( ph -> seq 0 ( + , ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) e. dom ~~> ) |
55 |
6 7 9 10 13 25 45 54
|
mtest |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) e. dom ( ~~>u ` RR ) ) |