Step |
Hyp |
Ref |
Expression |
1 |
|
unblimceq0lem.0 |
|
2 |
|
unblimceq0lem.1 |
|
3 |
|
unblimceq0lem.2 |
|
4 |
|
unblimceq0lem.3 |
|
5 |
|
breq1 |
|
6 |
5
|
anbi2d |
|
7 |
6
|
rexbidv |
|
8 |
7
|
ralbidv |
|
9 |
4
|
adantr |
|
10 |
2
|
ad2antrr |
|
11 |
|
simpr |
|
12 |
10 11
|
ffvelrnd |
|
13 |
12
|
abscld |
|
14 |
|
simprl |
|
15 |
14
|
rpred |
|
16 |
15
|
adantr |
|
17 |
13 16
|
readdcld |
|
18 |
12
|
absge0d |
|
19 |
14
|
rpgt0d |
|
20 |
19
|
adantr |
|
21 |
13 16 18 20
|
addgegt0d |
|
22 |
17 21
|
elrpd |
|
23 |
|
simplrl |
|
24 |
22 23
|
ifclda |
|
25 |
8 9 24
|
rspcdva |
|
26 |
|
simprr |
|
27 |
|
rsp |
|
28 |
25 26 27
|
sylc |
|
29 |
|
simprl |
|
30 |
|
neeq1 |
|
31 |
|
fvoveq1 |
|
32 |
31
|
breq1d |
|
33 |
|
2fveq3 |
|
34 |
33
|
breq2d |
|
35 |
30 32 34
|
3anbi123d |
|
36 |
35
|
adantl |
|
37 |
17
|
adantlr |
|
38 |
2
|
ad2antrr |
|
39 |
38 29
|
ffvelrnd |
|
40 |
39
|
abscld |
|
41 |
40
|
adantr |
|
42 |
|
simpr |
|
43 |
42
|
iftrued |
|
44 |
43
|
eqcomd |
|
45 |
|
simprrr |
|
46 |
45
|
adantr |
|
47 |
44 46
|
eqbrtrd |
|
48 |
37 41 47
|
lensymd |
|
49 |
|
2fveq3 |
|
50 |
49
|
adantl |
|
51 |
16 13
|
ltaddposd |
|
52 |
20 51
|
mpbid |
|
53 |
52
|
adantr |
|
54 |
50 53
|
eqbrtrd |
|
55 |
54
|
ex |
|
56 |
55
|
adantlr |
|
57 |
56
|
necon3bd |
|
58 |
48 57
|
mpd |
|
59 |
|
simprrl |
|
60 |
59
|
adantr |
|
61 |
16
|
adantlr |
|
62 |
12
|
adantlr |
|
63 |
62
|
absge0d |
|
64 |
13
|
adantlr |
|
65 |
61 64
|
addge02d |
|
66 |
63 65
|
mpbid |
|
67 |
61 37 41 66 47
|
letrd |
|
68 |
58 60 67
|
3jca |
|
69 |
|
simpr |
|
70 |
|
simpr |
|
71 |
29
|
adantr |
|
72 |
71
|
adantr |
|
73 |
70 72
|
eqeltrrd |
|
74 |
73
|
ex |
|
75 |
74
|
necon3bd |
|
76 |
69 75
|
mpd |
|
77 |
59
|
adantr |
|
78 |
69
|
iffalsed |
|
79 |
78
|
eqcomd |
|
80 |
45
|
adantr |
|
81 |
79 80
|
eqbrtrd |
|
82 |
76 77 81
|
3jca |
|
83 |
68 82
|
pm2.61dan |
|
84 |
29 36 83
|
rspcedvd |
|
85 |
28 84
|
rexlimddv |
|
86 |
85
|
ralrimivva |
|