| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unblimceq0lem.0 |
|- ( ph -> S C_ CC ) |
| 2 |
|
unblimceq0lem.1 |
|- ( ph -> F : S --> CC ) |
| 3 |
|
unblimceq0lem.2 |
|- ( ph -> A e. CC ) |
| 4 |
|
unblimceq0lem.3 |
|- ( ph -> A. b e. RR+ A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( F ` x ) ) ) ) |
| 5 |
|
breq1 |
|- ( b = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) -> ( b <_ ( abs ` ( F ` x ) ) <-> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) |
| 6 |
5
|
anbi2d |
|- ( b = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) -> ( ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( F ` x ) ) ) <-> ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) |
| 7 |
6
|
rexbidv |
|- ( b = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) -> ( E. x e. S ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( F ` x ) ) ) <-> E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) |
| 8 |
7
|
ralbidv |
|- ( b = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) -> ( A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( F ` x ) ) ) <-> A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> A. b e. RR+ A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ b <_ ( abs ` ( F ` x ) ) ) ) |
| 10 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> F : S --> CC ) |
| 11 |
|
simpr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> A e. S ) |
| 12 |
10 11
|
ffvelcdmd |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( F ` A ) e. CC ) |
| 13 |
12
|
abscld |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( abs ` ( F ` A ) ) e. RR ) |
| 14 |
|
simprl |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> c e. RR+ ) |
| 15 |
14
|
rpred |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> c e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> c e. RR ) |
| 17 |
13 16
|
readdcld |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( ( abs ` ( F ` A ) ) + c ) e. RR ) |
| 18 |
12
|
absge0d |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> 0 <_ ( abs ` ( F ` A ) ) ) |
| 19 |
14
|
rpgt0d |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> 0 < c ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> 0 < c ) |
| 21 |
13 16 18 20
|
addgegt0d |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> 0 < ( ( abs ` ( F ` A ) ) + c ) ) |
| 22 |
17 21
|
elrpd |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( ( abs ` ( F ` A ) ) + c ) e. RR+ ) |
| 23 |
|
simplrl |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ -. A e. S ) -> c e. RR+ ) |
| 24 |
22 23
|
ifclda |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) e. RR+ ) |
| 25 |
8 9 24
|
rspcdva |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> d e. RR+ ) |
| 27 |
|
rsp |
|- ( A. d e. RR+ E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) -> ( d e. RR+ -> E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) |
| 28 |
25 26 27
|
sylc |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> E. x e. S ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) |
| 29 |
|
simprl |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> x e. S ) |
| 30 |
|
neeq1 |
|- ( y = x -> ( y =/= A <-> x =/= A ) ) |
| 31 |
|
fvoveq1 |
|- ( y = x -> ( abs ` ( y - A ) ) = ( abs ` ( x - A ) ) ) |
| 32 |
31
|
breq1d |
|- ( y = x -> ( ( abs ` ( y - A ) ) < d <-> ( abs ` ( x - A ) ) < d ) ) |
| 33 |
|
2fveq3 |
|- ( y = x -> ( abs ` ( F ` y ) ) = ( abs ` ( F ` x ) ) ) |
| 34 |
33
|
breq2d |
|- ( y = x -> ( c <_ ( abs ` ( F ` y ) ) <-> c <_ ( abs ` ( F ` x ) ) ) ) |
| 35 |
30 32 34
|
3anbi123d |
|- ( y = x -> ( ( y =/= A /\ ( abs ` ( y - A ) ) < d /\ c <_ ( abs ` ( F ` y ) ) ) <-> ( x =/= A /\ ( abs ` ( x - A ) ) < d /\ c <_ ( abs ` ( F ` x ) ) ) ) ) |
| 36 |
35
|
adantl |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ y = x ) -> ( ( y =/= A /\ ( abs ` ( y - A ) ) < d /\ c <_ ( abs ` ( F ` y ) ) ) <-> ( x =/= A /\ ( abs ` ( x - A ) ) < d /\ c <_ ( abs ` ( F ` x ) ) ) ) ) |
| 37 |
17
|
adantlr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( ( abs ` ( F ` A ) ) + c ) e. RR ) |
| 38 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> F : S --> CC ) |
| 39 |
38 29
|
ffvelcdmd |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> ( F ` x ) e. CC ) |
| 40 |
39
|
abscld |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
| 41 |
40
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( abs ` ( F ` x ) ) e. RR ) |
| 42 |
|
simpr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> A e. S ) |
| 43 |
42
|
iftrued |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) = ( ( abs ` ( F ` A ) ) + c ) ) |
| 44 |
43
|
eqcomd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( ( abs ` ( F ` A ) ) + c ) = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) ) |
| 45 |
|
simprrr |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) |
| 47 |
44 46
|
eqbrtrd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( ( abs ` ( F ` A ) ) + c ) <_ ( abs ` ( F ` x ) ) ) |
| 48 |
37 41 47
|
lensymd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> -. ( abs ` ( F ` x ) ) < ( ( abs ` ( F ` A ) ) + c ) ) |
| 49 |
|
2fveq3 |
|- ( x = A -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` A ) ) ) |
| 50 |
49
|
adantl |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) /\ x = A ) -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` A ) ) ) |
| 51 |
16 13
|
ltaddposd |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( 0 < c <-> ( abs ` ( F ` A ) ) < ( ( abs ` ( F ` A ) ) + c ) ) ) |
| 52 |
20 51
|
mpbid |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( abs ` ( F ` A ) ) < ( ( abs ` ( F ` A ) ) + c ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) /\ x = A ) -> ( abs ` ( F ` A ) ) < ( ( abs ` ( F ` A ) ) + c ) ) |
| 54 |
50 53
|
eqbrtrd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) /\ x = A ) -> ( abs ` ( F ` x ) ) < ( ( abs ` ( F ` A ) ) + c ) ) |
| 55 |
54
|
ex |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ A e. S ) -> ( x = A -> ( abs ` ( F ` x ) ) < ( ( abs ` ( F ` A ) ) + c ) ) ) |
| 56 |
55
|
adantlr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( x = A -> ( abs ` ( F ` x ) ) < ( ( abs ` ( F ` A ) ) + c ) ) ) |
| 57 |
56
|
necon3bd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( -. ( abs ` ( F ` x ) ) < ( ( abs ` ( F ` A ) ) + c ) -> x =/= A ) ) |
| 58 |
48 57
|
mpd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> x =/= A ) |
| 59 |
|
simprrl |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> ( abs ` ( x - A ) ) < d ) |
| 60 |
59
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( abs ` ( x - A ) ) < d ) |
| 61 |
16
|
adantlr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> c e. RR ) |
| 62 |
12
|
adantlr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( F ` A ) e. CC ) |
| 63 |
62
|
absge0d |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> 0 <_ ( abs ` ( F ` A ) ) ) |
| 64 |
13
|
adantlr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( abs ` ( F ` A ) ) e. RR ) |
| 65 |
61 64
|
addge02d |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( 0 <_ ( abs ` ( F ` A ) ) <-> c <_ ( ( abs ` ( F ` A ) ) + c ) ) ) |
| 66 |
63 65
|
mpbid |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> c <_ ( ( abs ` ( F ` A ) ) + c ) ) |
| 67 |
61 37 41 66 47
|
letrd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> c <_ ( abs ` ( F ` x ) ) ) |
| 68 |
58 60 67
|
3jca |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ A e. S ) -> ( x =/= A /\ ( abs ` ( x - A ) ) < d /\ c <_ ( abs ` ( F ` x ) ) ) ) |
| 69 |
|
simpr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> -. A e. S ) |
| 70 |
|
simpr |
|- ( ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) /\ x = A ) -> x = A ) |
| 71 |
29
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> x e. S ) |
| 72 |
71
|
adantr |
|- ( ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) /\ x = A ) -> x e. S ) |
| 73 |
70 72
|
eqeltrrd |
|- ( ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) /\ x = A ) -> A e. S ) |
| 74 |
73
|
ex |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> ( x = A -> A e. S ) ) |
| 75 |
74
|
necon3bd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> ( -. A e. S -> x =/= A ) ) |
| 76 |
69 75
|
mpd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> x =/= A ) |
| 77 |
59
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> ( abs ` ( x - A ) ) < d ) |
| 78 |
69
|
iffalsed |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) = c ) |
| 79 |
78
|
eqcomd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> c = if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) ) |
| 80 |
45
|
adantr |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) |
| 81 |
79 80
|
eqbrtrd |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> c <_ ( abs ` ( F ` x ) ) ) |
| 82 |
76 77 81
|
3jca |
|- ( ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) /\ -. A e. S ) -> ( x =/= A /\ ( abs ` ( x - A ) ) < d /\ c <_ ( abs ` ( F ` x ) ) ) ) |
| 83 |
68 82
|
pm2.61dan |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> ( x =/= A /\ ( abs ` ( x - A ) ) < d /\ c <_ ( abs ` ( F ` x ) ) ) ) |
| 84 |
29 36 83
|
rspcedvd |
|- ( ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) /\ ( x e. S /\ ( ( abs ` ( x - A ) ) < d /\ if ( A e. S , ( ( abs ` ( F ` A ) ) + c ) , c ) <_ ( abs ` ( F ` x ) ) ) ) ) -> E. y e. S ( y =/= A /\ ( abs ` ( y - A ) ) < d /\ c <_ ( abs ` ( F ` y ) ) ) ) |
| 85 |
28 84
|
rexlimddv |
|- ( ( ph /\ ( c e. RR+ /\ d e. RR+ ) ) -> E. y e. S ( y =/= A /\ ( abs ` ( y - A ) ) < d /\ c <_ ( abs ` ( F ` y ) ) ) ) |
| 86 |
85
|
ralrimivva |
|- ( ph -> A. c e. RR+ A. d e. RR+ E. y e. S ( y =/= A /\ ( abs ` ( y - A ) ) < d /\ c <_ ( abs ` ( F ` y ) ) ) ) |