| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unblimceq0.0 |
|
| 2 |
|
unblimceq0.1 |
|
| 3 |
|
unblimceq0.2 |
|
| 4 |
|
unblimceq0.3 |
|
| 5 |
|
1rp |
|
| 6 |
5
|
a1i |
|
| 7 |
|
breq2 |
|
| 8 |
7
|
imbi2d |
|
| 9 |
8
|
rexralbidv |
|
| 10 |
9
|
notbid |
|
| 11 |
10
|
adantl |
|
| 12 |
|
simprr1 |
|
| 13 |
|
simprr2 |
|
| 14 |
12 13
|
jca |
|
| 15 |
|
1red |
|
| 16 |
2
|
ad2antrr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simprl |
|
| 19 |
17 18
|
ffvelcdmd |
|
| 20 |
|
simplr |
|
| 21 |
20
|
adantr |
|
| 22 |
19 21
|
subcld |
|
| 23 |
22
|
abscld |
|
| 24 |
19
|
abscld |
|
| 25 |
20
|
abscld |
|
| 26 |
25
|
adantr |
|
| 27 |
24 26
|
resubcld |
|
| 28 |
|
1cnd |
|
| 29 |
26
|
recnd |
|
| 30 |
28 29
|
pncand |
|
| 31 |
|
1red |
|
| 32 |
31 25
|
readdcld |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simprr3 |
|
| 35 |
33 24 26 34
|
lesub1dd |
|
| 36 |
30 35
|
eqbrtrrd |
|
| 37 |
19 21
|
abs2difd |
|
| 38 |
15 27 23 36 37
|
letrd |
|
| 39 |
15 23 38
|
lensymd |
|
| 40 |
14 39
|
jcnd |
|
| 41 |
|
breq2 |
|
| 42 |
41
|
3anbi2d |
|
| 43 |
42
|
rexbidv |
|
| 44 |
|
breq1 |
|
| 45 |
44
|
3anbi3d |
|
| 46 |
45
|
rexbidv |
|
| 47 |
46
|
ralbidv |
|
| 48 |
1 2 3 4
|
unblimceq0lem |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
|
0lt1 |
|
| 51 |
50
|
a1i |
|
| 52 |
20
|
absge0d |
|
| 53 |
31 25 51 52
|
addgtge0d |
|
| 54 |
32 53
|
elrpd |
|
| 55 |
47 49 54
|
rspcdva |
|
| 56 |
|
simpr |
|
| 57 |
43 55 56
|
rspcdva |
|
| 58 |
40 57
|
reximddv |
|
| 59 |
|
rexnal |
|
| 60 |
58 59
|
sylib |
|
| 61 |
60
|
nrexdv |
|
| 62 |
6 11 61
|
rspcedvd |
|
| 63 |
|
rexnal |
|
| 64 |
62 63
|
sylib |
|
| 65 |
64
|
ex |
|
| 66 |
|
imnan |
|
| 67 |
65 66
|
sylib |
|
| 68 |
2 1 3
|
ellimc3 |
|
| 69 |
67 68
|
mtbird |
|
| 70 |
69
|
eq0rdv |
|