Metamath Proof Explorer


Theorem ellimc3

Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ellimc3.f φF:A
ellimc3.a φA
ellimc3.b φB
Assertion ellimc3 φCFlimBCx+y+zAzBzB<yFzC<x

Proof

Step Hyp Ref Expression
1 ellimc3.f φF:A
2 ellimc3.a φA
3 ellimc3.b φB
4 eqid TopOpenfld=TopOpenfld
5 1 2 3 4 ellimc2 φCFlimBCuTopOpenfldCuvTopOpenfldBvFvABu
6 cnxmet abs∞Met
7 simplr φCx+C
8 simpr φCx+x+
9 blcntr abs∞MetCx+CCballabsx
10 6 7 8 9 mp3an2i φCx+CCballabsx
11 rpxr x+x*
12 11 adantl φCx+x*
13 4 cnfldtopn TopOpenfld=MetOpenabs
14 13 blopn abs∞MetCx*CballabsxTopOpenfld
15 6 7 12 14 mp3an2i φCx+CballabsxTopOpenfld
16 eleq2 u=CballabsxCuCCballabsx
17 sseq2 u=CballabsxFvABuFvABCballabsx
18 17 anbi2d u=CballabsxBvFvABuBvFvABCballabsx
19 18 rexbidv u=CballabsxvTopOpenfldBvFvABuvTopOpenfldBvFvABCballabsx
20 16 19 imbi12d u=CballabsxCuvTopOpenfldBvFvABuCCballabsxvTopOpenfldBvFvABCballabsx
21 20 rspcv CballabsxTopOpenflduTopOpenfldCuvTopOpenfldBvFvABuCCballabsxvTopOpenfldBvFvABCballabsx
22 15 21 syl φCx+uTopOpenfldCuvTopOpenfldBvFvABuCCballabsxvTopOpenfldBvFvABCballabsx
23 10 22 mpid φCx+uTopOpenfldCuvTopOpenfldBvFvABuvTopOpenfldBvFvABCballabsx
24 13 mopni2 abs∞MetvTopOpenfldBvy+Bballabsyv
25 6 24 mp3an1 vTopOpenfldBvy+Bballabsyv
26 ssrin BballabsyvBballabsyABvAB
27 imass2 BballabsyABvABFBballabsyABFvAB
28 sstr2 FBballabsyABFvABFvABCballabsxFBballabsyABCballabsx
29 26 27 28 3syl BballabsyvFvABCballabsxFBballabsyABCballabsx
30 29 com12 FvABCballabsxBballabsyvFBballabsyABCballabsx
31 30 reximdv FvABCballabsxy+Bballabsyvy+FBballabsyABCballabsx
32 25 31 syl5com vTopOpenfldBvFvABCballabsxy+FBballabsyABCballabsx
33 32 impr vTopOpenfldBvFvABCballabsxy+FBballabsyABCballabsx
34 33 rexlimiva vTopOpenfldBvFvABCballabsxy+FBballabsyABCballabsx
35 23 34 syl6 φCx+uTopOpenfldCuvTopOpenfldBvFvABuy+FBballabsyABCballabsx
36 35 ralrimdva φCuTopOpenfldCuvTopOpenfldBvFvABux+y+FBballabsyABCballabsx
37 13 mopni2 abs∞MetuTopOpenfldCux+Cballabsxu
38 6 37 mp3an1 uTopOpenfldCux+Cballabsxu
39 r19.29r x+Cballabsxux+y+FBballabsyABCballabsxx+Cballabsxuy+FBballabsyABCballabsx
40 3 ad3antrrr φCx+y+B
41 simpr φCx+y+y+
42 41 rpxrd φCx+y+y*
43 13 blopn abs∞MetBy*BballabsyTopOpenfld
44 6 40 42 43 mp3an2i φCx+y+BballabsyTopOpenfld
45 blcntr abs∞MetBy+BBballabsy
46 6 40 41 45 mp3an2i φCx+y+BBballabsy
47 eleq2 v=BballabsyBvBBballabsy
48 ineq1 v=BballabsyvAB=BballabsyAB
49 48 imaeq2d v=BballabsyFvAB=FBballabsyAB
50 49 sseq1d v=BballabsyFvABCballabsxFBballabsyABCballabsx
51 47 50 anbi12d v=BballabsyBvFvABCballabsxBBballabsyFBballabsyABCballabsx
52 51 rspcev BballabsyTopOpenfldBBballabsyFBballabsyABCballabsxvTopOpenfldBvFvABCballabsx
53 52 expr BballabsyTopOpenfldBBballabsyFBballabsyABCballabsxvTopOpenfldBvFvABCballabsx
54 44 46 53 syl2anc φCx+y+FBballabsyABCballabsxvTopOpenfldBvFvABCballabsx
55 54 rexlimdva φCx+y+FBballabsyABCballabsxvTopOpenfldBvFvABCballabsx
56 sstr2 FvABCballabsxCballabsxuFvABu
57 56 com12 CballabsxuFvABCballabsxFvABu
58 57 anim2d CballabsxuBvFvABCballabsxBvFvABu
59 58 reximdv CballabsxuvTopOpenfldBvFvABCballabsxvTopOpenfldBvFvABu
60 55 59 syl9 φCx+Cballabsxuy+FBballabsyABCballabsxvTopOpenfldBvFvABu
61 60 impd φCx+Cballabsxuy+FBballabsyABCballabsxvTopOpenfldBvFvABu
62 61 rexlimdva φCx+Cballabsxuy+FBballabsyABCballabsxvTopOpenfldBvFvABu
63 39 62 syl5 φCx+Cballabsxux+y+FBballabsyABCballabsxvTopOpenfldBvFvABu
64 63 expd φCx+Cballabsxux+y+FBballabsyABCballabsxvTopOpenfldBvFvABu
65 38 64 syl5 φCuTopOpenfldCux+y+FBballabsyABCballabsxvTopOpenfldBvFvABu
66 65 expdimp φCuTopOpenfldCux+y+FBballabsyABCballabsxvTopOpenfldBvFvABu
67 66 com23 φCuTopOpenfldx+y+FBballabsyABCballabsxCuvTopOpenfldBvFvABu
68 67 ralrimdva φCx+y+FBballabsyABCballabsxuTopOpenfldCuvTopOpenfldBvFvABu
69 36 68 impbid φCuTopOpenfldCuvTopOpenfldBvFvABux+y+FBballabsyABCballabsx
70 1 ad2antrr φCx+y+F:A
71 70 ffund φCx+y+FunF
72 inss2 BballabsyABAB
73 difss ABA
74 70 fdmd φCx+y+domF=A
75 73 74 sseqtrrid φCx+y+ABdomF
76 72 75 sstrid φCx+y+BballabsyABdomF
77 funimass4 FunFBballabsyABdomFFBballabsyABCballabsxzBballabsyABFzCballabsx
78 71 76 77 syl2anc φCx+y+FBballabsyABCballabsxzBballabsyABFzCballabsx
79 6 a1i φCx+y+zABabs∞Met
80 simplrr φCx+y+zABy+
81 80 rpxrd φCx+y+zABy*
82 3 ad3antrrr φCx+y+zABB
83 73 2 sstrid φAB
84 83 ad2antrr φCx+y+AB
85 84 sselda φCx+y+zABz
86 elbl3 abs∞Mety*BzzBballabsyzabsB<y
87 79 81 82 85 86 syl22anc φCx+y+zABzBballabsyzabsB<y
88 eqid abs=abs
89 88 cnmetdval zBzabsB=zB
90 85 82 89 syl2anc φCx+y+zABzabsB=zB
91 90 breq1d φCx+y+zABzabsB<yzB<y
92 87 91 bitrd φCx+y+zABzBballabsyzB<y
93 simplrl φCx+y+zABx+
94 93 rpxrd φCx+y+zABx*
95 simpllr φCx+y+zABC
96 eldifi zABzA
97 ffvelcdm F:AzAFz
98 70 96 97 syl2an φCx+y+zABFz
99 elbl3 abs∞Metx*CFzFzCballabsxFzabsC<x
100 79 94 95 98 99 syl22anc φCx+y+zABFzCballabsxFzabsC<x
101 88 cnmetdval FzCFzabsC=FzC
102 98 95 101 syl2anc φCx+y+zABFzabsC=FzC
103 102 breq1d φCx+y+zABFzabsC<xFzC<x
104 100 103 bitrd φCx+y+zABFzCballabsxFzC<x
105 92 104 imbi12d φCx+y+zABzBballabsyFzCballabsxzB<yFzC<x
106 105 ralbidva φCx+y+zABzBballabsyFzCballabsxzABzB<yFzC<x
107 elin zBballabsyABzBballabsyzAB
108 107 biancomi zBballabsyABzABzBballabsy
109 108 imbi1i zBballabsyABFzCballabsxzABzBballabsyFzCballabsx
110 impexp zABzBballabsyFzCballabsxzABzBballabsyFzCballabsx
111 109 110 bitr2i zABzBballabsyFzCballabsxzBballabsyABFzCballabsx
112 111 ralbii2 zABzBballabsyFzCballabsxzBballabsyABFzCballabsx
113 impexp zAzBzB<yFzC<xzAzBzB<yFzC<x
114 eldifsn zABzAzB
115 114 imbi1i zABzB<yFzC<xzAzBzB<yFzC<x
116 impexp zBzB<yFzC<xzBzB<yFzC<x
117 116 imbi2i zAzBzB<yFzC<xzAzBzB<yFzC<x
118 113 115 117 3bitr4i zABzB<yFzC<xzAzBzB<yFzC<x
119 118 ralbii2 zABzB<yFzC<xzAzBzB<yFzC<x
120 106 112 119 3bitr3g φCx+y+zBballabsyABFzCballabsxzAzBzB<yFzC<x
121 78 120 bitrd φCx+y+FBballabsyABCballabsxzAzBzB<yFzC<x
122 121 anassrs φCx+y+FBballabsyABCballabsxzAzBzB<yFzC<x
123 122 rexbidva φCx+y+FBballabsyABCballabsxy+zAzBzB<yFzC<x
124 123 ralbidva φCx+y+FBballabsyABCballabsxx+y+zAzBzB<yFzC<x
125 69 124 bitrd φCuTopOpenfldCuvTopOpenfldBvFvABux+y+zAzBzB<yFzC<x
126 125 pm5.32da φCuTopOpenfldCuvTopOpenfldBvFvABuCx+y+zAzBzB<yFzC<x
127 5 126 bitrd φCFlimBCx+y+zAzBzB<yFzC<x