Metamath Proof Explorer


Theorem knoppndvlem5

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem5.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppndvlem5.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppndvlem5.a
|- ( ph -> A e. RR )
knoppndvlem5.c
|- ( ph -> C e. RR )
knoppndvlem5.n
|- ( ph -> N e. NN )
Assertion knoppndvlem5
|- ( ph -> sum_ i e. ( 0 ... J ) ( ( F ` A ) ` i ) e. RR )

Proof

Step Hyp Ref Expression
1 knoppndvlem5.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppndvlem5.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppndvlem5.a
 |-  ( ph -> A e. RR )
4 knoppndvlem5.c
 |-  ( ph -> C e. RR )
5 knoppndvlem5.n
 |-  ( ph -> N e. NN )
6 fzfid
 |-  ( ph -> ( 0 ... J ) e. Fin )
7 5 adantr
 |-  ( ( ph /\ i e. ( 0 ... J ) ) -> N e. NN )
8 4 adantr
 |-  ( ( ph /\ i e. ( 0 ... J ) ) -> C e. RR )
9 3 adantr
 |-  ( ( ph /\ i e. ( 0 ... J ) ) -> A e. RR )
10 elfznn0
 |-  ( i e. ( 0 ... J ) -> i e. NN0 )
11 10 adantl
 |-  ( ( ph /\ i e. ( 0 ... J ) ) -> i e. NN0 )
12 1 2 7 8 9 11 knoppcnlem3
 |-  ( ( ph /\ i e. ( 0 ... J ) ) -> ( ( F ` A ) ` i ) e. RR )
13 6 12 fsumrecl
 |-  ( ph -> sum_ i e. ( 0 ... J ) ( ( F ` A ) ` i ) e. RR )