Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem5.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppndvlem5.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppndvlem5.a |
|- ( ph -> A e. RR ) |
4 |
|
knoppndvlem5.c |
|- ( ph -> C e. RR ) |
5 |
|
knoppndvlem5.n |
|- ( ph -> N e. NN ) |
6 |
|
fzfid |
|- ( ph -> ( 0 ... J ) e. Fin ) |
7 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ... J ) ) -> N e. NN ) |
8 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ... J ) ) -> C e. RR ) |
9 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ... J ) ) -> A e. RR ) |
10 |
|
elfznn0 |
|- ( i e. ( 0 ... J ) -> i e. NN0 ) |
11 |
10
|
adantl |
|- ( ( ph /\ i e. ( 0 ... J ) ) -> i e. NN0 ) |
12 |
1 2 7 8 9 11
|
knoppcnlem3 |
|- ( ( ph /\ i e. ( 0 ... J ) ) -> ( ( F ` A ) ` i ) e. RR ) |
13 |
6 12
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... J ) ( ( F ` A ) ` i ) e. RR ) |