| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndv.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndv.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndv.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppndv.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 5 |
|
knoppndv.n |
|- ( ph -> N e. NN ) |
| 6 |
|
knoppndv.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 7 |
|
simpl |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> ph ) |
| 8 |
|
ax-resscn |
|- RR C_ CC |
| 9 |
8
|
a1i |
|- ( ph -> RR C_ CC ) |
| 10 |
4
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 11 |
10
|
simpld |
|- ( ph -> C e. RR ) |
| 12 |
10
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
| 13 |
1 2 3 5 11 12
|
knoppcn |
|- ( ph -> W e. ( RR -cn-> CC ) ) |
| 14 |
|
cncff |
|- ( W e. ( RR -cn-> CC ) -> W : RR --> CC ) |
| 15 |
13 14
|
syl |
|- ( ph -> W : RR --> CC ) |
| 16 |
|
ssidd |
|- ( ph -> RR C_ RR ) |
| 17 |
9 15 16
|
dvbss |
|- ( ph -> dom ( RR _D W ) C_ RR ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> dom ( RR _D W ) C_ RR ) |
| 19 |
|
simpr |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> h e. dom ( RR _D W ) ) |
| 20 |
18 19
|
sseldd |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> h e. RR ) |
| 21 |
7 20
|
jca |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> ( ph /\ h e. RR ) ) |
| 22 |
|
ssidd |
|- ( ( ph /\ h e. RR ) -> RR C_ RR ) |
| 23 |
15
|
adantr |
|- ( ( ph /\ h e. RR ) -> W : RR --> CC ) |
| 24 |
4
|
ad2antrr |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> C e. ( -u 1 (,) 1 ) ) |
| 25 |
|
simprr |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> d e. RR+ ) |
| 26 |
|
simprl |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> e e. RR+ ) |
| 27 |
|
simplr |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> h e. RR ) |
| 28 |
5
|
ad2antrr |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> N e. NN ) |
| 29 |
6
|
ad2antrr |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> 1 < ( N x. ( abs ` C ) ) ) |
| 30 |
1 2 3 24 25 26 27 28 29
|
knoppndvlem22 |
|- ( ( ( ph /\ h e. RR ) /\ ( e e. RR+ /\ d e. RR+ ) ) -> E. a e. RR E. b e. RR ( ( a <_ h /\ h <_ b ) /\ ( ( b - a ) < d /\ a =/= b ) /\ e <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |
| 31 |
30
|
ralrimivva |
|- ( ( ph /\ h e. RR ) -> A. e e. RR+ A. d e. RR+ E. a e. RR E. b e. RR ( ( a <_ h /\ h <_ b ) /\ ( ( b - a ) < d /\ a =/= b ) /\ e <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |
| 32 |
22 23 31
|
unbdqndv2 |
|- ( ( ph /\ h e. RR ) -> -. h e. dom ( RR _D W ) ) |
| 33 |
21 32
|
syl |
|- ( ( ph /\ h e. dom ( RR _D W ) ) -> -. h e. dom ( RR _D W ) ) |
| 34 |
33
|
pm2.01da |
|- ( ph -> -. h e. dom ( RR _D W ) ) |
| 35 |
34
|
alrimiv |
|- ( ph -> A. h -. h e. dom ( RR _D W ) ) |
| 36 |
|
eq0 |
|- ( dom ( RR _D W ) = (/) <-> A. h -. h e. dom ( RR _D W ) ) |
| 37 |
35 36
|
sylibr |
|- ( ph -> dom ( RR _D W ) = (/) ) |