| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppf.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppf.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppf.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppf.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 5 |
|
knoppf.n |
|- ( ph -> N e. NN ) |
| 6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 7 |
|
0zd |
|- ( ( ph /\ w e. RR ) -> 0 e. ZZ ) |
| 8 |
|
eqidd |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) = ( ( F ` w ) ` i ) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ w e. RR ) -> N e. NN ) |
| 10 |
9
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> N e. NN ) |
| 11 |
4
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 12 |
11
|
simpld |
|- ( ph -> C e. RR ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ w e. RR ) -> C e. RR ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> C e. RR ) |
| 15 |
|
simpr |
|- ( ( ph /\ w e. RR ) -> w e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> w e. RR ) |
| 17 |
|
simpr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> i e. NN0 ) |
| 18 |
1 2 10 14 16 17
|
knoppcnlem3 |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) e. RR ) |
| 19 |
|
fveq2 |
|- ( w = z -> ( F ` w ) = ( F ` z ) ) |
| 20 |
19
|
fveq1d |
|- ( w = z -> ( ( F ` w ) ` i ) = ( ( F ` z ) ` i ) ) |
| 21 |
20
|
sumeq2sdv |
|- ( w = z -> sum_ i e. NN0 ( ( F ` w ) ` i ) = sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
| 22 |
21
|
cbvmptv |
|- ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) = ( z e. RR |-> sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
| 23 |
3 22
|
eqtri |
|- W = ( z e. RR |-> sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
| 24 |
4
|
adantr |
|- ( ( ph /\ w e. RR ) -> C e. ( -u 1 (,) 1 ) ) |
| 25 |
1 2 23 15 24 9
|
knoppndvlem4 |
|- ( ( ph /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) ~~> ( W ` w ) ) |
| 26 |
|
seqex |
|- seq 0 ( + , ( F ` w ) ) e. _V |
| 27 |
|
fvex |
|- ( W ` w ) e. _V |
| 28 |
26 27
|
breldm |
|- ( seq 0 ( + , ( F ` w ) ) ~~> ( W ` w ) -> seq 0 ( + , ( F ` w ) ) e. dom ~~> ) |
| 29 |
25 28
|
syl |
|- ( ( ph /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) e. dom ~~> ) |
| 30 |
6 7 8 18 29
|
isumrecl |
|- ( ( ph /\ w e. RR ) -> sum_ i e. NN0 ( ( F ` w ) ` i ) e. RR ) |
| 31 |
30 3
|
fmptd |
|- ( ph -> W : RR --> RR ) |