Step |
Hyp |
Ref |
Expression |
1 |
|
knoppf.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppf.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppf.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
4 |
|
knoppf.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
5 |
|
knoppf.n |
|- ( ph -> N e. NN ) |
6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
7 |
|
0zd |
|- ( ( ph /\ w e. RR ) -> 0 e. ZZ ) |
8 |
|
eqidd |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) = ( ( F ` w ) ` i ) ) |
9 |
5
|
adantr |
|- ( ( ph /\ w e. RR ) -> N e. NN ) |
10 |
9
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> N e. NN ) |
11 |
4
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
12 |
11
|
simpld |
|- ( ph -> C e. RR ) |
13 |
12
|
adantr |
|- ( ( ph /\ w e. RR ) -> C e. RR ) |
14 |
13
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> C e. RR ) |
15 |
|
simpr |
|- ( ( ph /\ w e. RR ) -> w e. RR ) |
16 |
15
|
adantr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> w e. RR ) |
17 |
|
simpr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> i e. NN0 ) |
18 |
1 2 10 14 16 17
|
knoppcnlem3 |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) e. RR ) |
19 |
|
fveq2 |
|- ( w = z -> ( F ` w ) = ( F ` z ) ) |
20 |
19
|
fveq1d |
|- ( w = z -> ( ( F ` w ) ` i ) = ( ( F ` z ) ` i ) ) |
21 |
20
|
sumeq2sdv |
|- ( w = z -> sum_ i e. NN0 ( ( F ` w ) ` i ) = sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
22 |
21
|
cbvmptv |
|- ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) = ( z e. RR |-> sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
23 |
3 22
|
eqtri |
|- W = ( z e. RR |-> sum_ i e. NN0 ( ( F ` z ) ` i ) ) |
24 |
4
|
adantr |
|- ( ( ph /\ w e. RR ) -> C e. ( -u 1 (,) 1 ) ) |
25 |
1 2 23 15 24 9
|
knoppndvlem4 |
|- ( ( ph /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) ~~> ( W ` w ) ) |
26 |
|
seqex |
|- seq 0 ( + , ( F ` w ) ) e. _V |
27 |
|
fvex |
|- ( W ` w ) e. _V |
28 |
26 27
|
breldm |
|- ( seq 0 ( + , ( F ` w ) ) ~~> ( W ` w ) -> seq 0 ( + , ( F ` w ) ) e. dom ~~> ) |
29 |
25 28
|
syl |
|- ( ( ph /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) e. dom ~~> ) |
30 |
6 7 8 18 29
|
isumrecl |
|- ( ( ph /\ w e. RR ) -> sum_ i e. NN0 ( ( F ` w ) ` i ) e. RR ) |
31 |
30 3
|
fmptd |
|- ( ph -> W : RR --> RR ) |