Metamath Proof Explorer


Theorem knoppf

Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppf.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppf.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppf.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
knoppf.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
knoppf.n ( 𝜑𝑁 ∈ ℕ )
Assertion knoppf ( 𝜑𝑊 : ℝ ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 knoppf.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppf.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppf.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 knoppf.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
5 knoppf.n ( 𝜑𝑁 ∈ ℕ )
6 nn0uz 0 = ( ℤ ‘ 0 )
7 0zd ( ( 𝜑𝑤 ∈ ℝ ) → 0 ∈ ℤ )
8 eqidd ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹𝑤 ) ‘ 𝑖 ) = ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
9 5 adantr ( ( 𝜑𝑤 ∈ ℝ ) → 𝑁 ∈ ℕ )
10 9 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℕ )
11 4 knoppndvlem3 ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) )
12 11 simpld ( 𝜑𝐶 ∈ ℝ )
13 12 adantr ( ( 𝜑𝑤 ∈ ℝ ) → 𝐶 ∈ ℝ )
14 13 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℝ )
15 simpr ( ( 𝜑𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ )
16 15 adantr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑤 ∈ ℝ )
17 simpr ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 )
18 1 2 10 14 16 17 knoppcnlem3 ( ( ( 𝜑𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹𝑤 ) ‘ 𝑖 ) ∈ ℝ )
19 fveq2 ( 𝑤 = 𝑧 → ( 𝐹𝑤 ) = ( 𝐹𝑧 ) )
20 19 fveq1d ( 𝑤 = 𝑧 → ( ( 𝐹𝑤 ) ‘ 𝑖 ) = ( ( 𝐹𝑧 ) ‘ 𝑖 ) )
21 20 sumeq2sdv ( 𝑤 = 𝑧 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑧 ) ‘ 𝑖 ) )
22 21 cbvmptv ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) ) = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑧 ) ‘ 𝑖 ) )
23 3 22 eqtri 𝑊 = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑧 ) ‘ 𝑖 ) )
24 4 adantr ( ( 𝜑𝑤 ∈ ℝ ) → 𝐶 ∈ ( - 1 (,) 1 ) )
25 1 2 23 15 24 9 knoppndvlem4 ( ( 𝜑𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹𝑤 ) ) ⇝ ( 𝑊𝑤 ) )
26 seqex seq 0 ( + , ( 𝐹𝑤 ) ) ∈ V
27 fvex ( 𝑊𝑤 ) ∈ V
28 26 27 breldm ( seq 0 ( + , ( 𝐹𝑤 ) ) ⇝ ( 𝑊𝑤 ) → seq 0 ( + , ( 𝐹𝑤 ) ) ∈ dom ⇝ )
29 25 28 syl ( ( 𝜑𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹𝑤 ) ) ∈ dom ⇝ )
30 6 7 8 18 29 isumrecl ( ( 𝜑𝑤 ∈ ℝ ) → Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) ∈ ℝ )
31 30 3 fmptd ( 𝜑𝑊 : ℝ ⟶ ℝ )