Step |
Hyp |
Ref |
Expression |
1 |
|
knoppf.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppf.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppf.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
knoppf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
5 |
|
knoppf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
7 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 0 ∈ ℤ ) |
8 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑁 ∈ ℕ ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
11 |
4
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
12 |
11
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑤 ∈ ℝ ) |
17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
18 |
1 2 10 14 16 17
|
knoppcnlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
21 |
20
|
sumeq2sdv |
⊢ ( 𝑤 = 𝑧 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
22 |
21
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
23 |
3 22
|
eqtri |
⊢ 𝑊 = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐶 ∈ ( - 1 (,) 1 ) ) |
25 |
1 2 23 15 24 9
|
knoppndvlem4 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ⇝ ( 𝑊 ‘ 𝑤 ) ) |
26 |
|
seqex |
⊢ seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ V |
27 |
|
fvex |
⊢ ( 𝑊 ‘ 𝑤 ) ∈ V |
28 |
26 27
|
breldm |
⊢ ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ⇝ ( 𝑊 ‘ 𝑤 ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ dom ⇝ ) |
29 |
25 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ dom ⇝ ) |
30 |
6 7 8 18 29
|
isumrecl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
31 |
30 3
|
fmptd |
⊢ ( 𝜑 → 𝑊 : ℝ ⟶ ℝ ) |