| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppf.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppf.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppf.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 4 |
|
knoppf.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
| 5 |
|
knoppf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 7 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 0 ∈ ℤ ) |
| 8 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑁 ∈ ℕ ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
| 11 |
4
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
| 12 |
11
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑤 ∈ ℝ ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 18 |
1 2 10 14 16 17
|
knoppcnlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
| 19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 21 |
20
|
sumeq2sdv |
⊢ ( 𝑤 = 𝑧 → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 22 |
21
|
cbvmptv |
⊢ ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 23 |
3 22
|
eqtri |
⊢ 𝑊 = ( 𝑧 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑖 ) ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐶 ∈ ( - 1 (,) 1 ) ) |
| 25 |
1 2 23 15 24 9
|
knoppndvlem4 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ⇝ ( 𝑊 ‘ 𝑤 ) ) |
| 26 |
|
seqex |
⊢ seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ V |
| 27 |
|
fvex |
⊢ ( 𝑊 ‘ 𝑤 ) ∈ V |
| 28 |
26 27
|
breldm |
⊢ ( seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ⇝ ( 𝑊 ‘ 𝑤 ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 29 |
25 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → seq 0 ( + , ( 𝐹 ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 30 |
6 7 8 18 29
|
isumrecl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ∈ ℝ ) |
| 31 |
30 3
|
fmptd |
⊢ ( 𝜑 → 𝑊 : ℝ ⟶ ℝ ) |