Metamath Proof Explorer


Theorem knoppf

Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppf.t T = x x + 1 2 x
knoppf.f F = y n 0 C n T 2 N n y
knoppf.w W = w i 0 F w i
knoppf.c φ C 1 1
knoppf.n φ N
Assertion knoppf φ W :

Proof

Step Hyp Ref Expression
1 knoppf.t T = x x + 1 2 x
2 knoppf.f F = y n 0 C n T 2 N n y
3 knoppf.w W = w i 0 F w i
4 knoppf.c φ C 1 1
5 knoppf.n φ N
6 nn0uz 0 = 0
7 0zd φ w 0
8 eqidd φ w i 0 F w i = F w i
9 5 adantr φ w N
10 9 adantr φ w i 0 N
11 4 knoppndvlem3 φ C C < 1
12 11 simpld φ C
13 12 adantr φ w C
14 13 adantr φ w i 0 C
15 simpr φ w w
16 15 adantr φ w i 0 w
17 simpr φ w i 0 i 0
18 1 2 10 14 16 17 knoppcnlem3 φ w i 0 F w i
19 fveq2 w = z F w = F z
20 19 fveq1d w = z F w i = F z i
21 20 sumeq2sdv w = z i 0 F w i = i 0 F z i
22 21 cbvmptv w i 0 F w i = z i 0 F z i
23 3 22 eqtri W = z i 0 F z i
24 4 adantr φ w C 1 1
25 1 2 23 15 24 9 knoppndvlem4 φ w seq 0 + F w W w
26 seqex seq 0 + F w V
27 fvex W w V
28 26 27 breldm seq 0 + F w W w seq 0 + F w dom
29 25 28 syl φ w seq 0 + F w dom
30 6 7 8 18 29 isumrecl φ w i 0 F w i
31 30 3 fmptd φ W :