Metamath Proof Explorer


Theorem knoppcn2

Description: Variant of knoppcn with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppcn2.t T=xx+12x
knoppcn2.f F=yn0CnT2 Nny
knoppcn2.w W=wi0Fwi
knoppcn2.n φN
knoppcn2.c φC11
Assertion knoppcn2 φW:cn

Proof

Step Hyp Ref Expression
1 knoppcn2.t T=xx+12x
2 knoppcn2.f F=yn0CnT2 Nny
3 knoppcn2.w W=wi0Fwi
4 knoppcn2.n φN
5 knoppcn2.c φC11
6 1 2 3 5 4 knoppf φW:
7 ax-resscn
8 7 a1i φ
9 5 knoppndvlem3 φCC<1
10 9 simpld φC
11 9 simprd φC<1
12 1 2 3 4 10 11 knoppcn φW:cn
13 8 12 jca φW:cn
14 cncfcdm W:cnW:cnW:
15 13 14 syl φW:cnW:
16 6 15 mpbird φW:cn