Metamath Proof Explorer


Theorem knoppcn2

Description: Variant of knoppcn with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppcn2.t T = x x + 1 2 x
knoppcn2.f F = y n 0 C n T 2 N n y
knoppcn2.w W = w i 0 F w i
knoppcn2.n φ N
knoppcn2.c φ C 1 1
Assertion knoppcn2 φ W : cn

Proof

Step Hyp Ref Expression
1 knoppcn2.t T = x x + 1 2 x
2 knoppcn2.f F = y n 0 C n T 2 N n y
3 knoppcn2.w W = w i 0 F w i
4 knoppcn2.n φ N
5 knoppcn2.c φ C 1 1
6 1 2 3 5 4 knoppf φ W :
7 ax-resscn
8 7 a1i φ
9 5 knoppndvlem3 φ C C < 1
10 9 simpld φ C
11 9 simprd φ C < 1
12 1 2 3 4 10 11 knoppcn φ W : cn
13 8 12 jca φ W : cn
14 cncffvrn W : cn W : cn W :
15 13 14 syl φ W : cn W :
16 6 15 mpbird φ W : cn