Metamath Proof Explorer


Theorem knoppcn2

Description: Variant of knoppcn with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses knoppcn2.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppcn2.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppcn2.w
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
knoppcn2.n
|- ( ph -> N e. NN )
knoppcn2.c
|- ( ph -> C e. ( -u 1 (,) 1 ) )
Assertion knoppcn2
|- ( ph -> W e. ( RR -cn-> RR ) )

Proof

Step Hyp Ref Expression
1 knoppcn2.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppcn2.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppcn2.w
 |-  W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
4 knoppcn2.n
 |-  ( ph -> N e. NN )
5 knoppcn2.c
 |-  ( ph -> C e. ( -u 1 (,) 1 ) )
6 1 2 3 5 4 knoppf
 |-  ( ph -> W : RR --> RR )
7 ax-resscn
 |-  RR C_ CC
8 7 a1i
 |-  ( ph -> RR C_ CC )
9 5 knoppndvlem3
 |-  ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) )
10 9 simpld
 |-  ( ph -> C e. RR )
11 9 simprd
 |-  ( ph -> ( abs ` C ) < 1 )
12 1 2 3 4 10 11 knoppcn
 |-  ( ph -> W e. ( RR -cn-> CC ) )
13 8 12 jca
 |-  ( ph -> ( RR C_ CC /\ W e. ( RR -cn-> CC ) ) )
14 cncffvrn
 |-  ( ( RR C_ CC /\ W e. ( RR -cn-> CC ) ) -> ( W e. ( RR -cn-> RR ) <-> W : RR --> RR ) )
15 13 14 syl
 |-  ( ph -> ( W e. ( RR -cn-> RR ) <-> W : RR --> RR ) )
16 6 15 mpbird
 |-  ( ph -> W e. ( RR -cn-> RR ) )