Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcn2.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppcn2.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppcn2.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
4 |
|
knoppcn2.n |
|- ( ph -> N e. NN ) |
5 |
|
knoppcn2.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
6 |
1 2 3 5 4
|
knoppf |
|- ( ph -> W : RR --> RR ) |
7 |
|
ax-resscn |
|- RR C_ CC |
8 |
7
|
a1i |
|- ( ph -> RR C_ CC ) |
9 |
5
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
10 |
9
|
simpld |
|- ( ph -> C e. RR ) |
11 |
9
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
12 |
1 2 3 4 10 11
|
knoppcn |
|- ( ph -> W e. ( RR -cn-> CC ) ) |
13 |
8 12
|
jca |
|- ( ph -> ( RR C_ CC /\ W e. ( RR -cn-> CC ) ) ) |
14 |
|
cncffvrn |
|- ( ( RR C_ CC /\ W e. ( RR -cn-> CC ) ) -> ( W e. ( RR -cn-> RR ) <-> W : RR --> RR ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( W e. ( RR -cn-> RR ) <-> W : RR --> RR ) ) |
16 |
6 15
|
mpbird |
|- ( ph -> W e. ( RR -cn-> RR ) ) |