Metamath Proof Explorer


Theorem knoppndvlem3

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021)

Ref Expression
Hypothesis knoppndvlem3.c
|- ( ph -> C e. ( -u 1 (,) 1 ) )
Assertion knoppndvlem3
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) )

Proof

Step Hyp Ref Expression
1 knoppndvlem3.c
 |-  ( ph -> C e. ( -u 1 (,) 1 ) )
2 elioore
 |-  ( C e. ( -u 1 (,) 1 ) -> C e. RR )
3 1 2 syl
 |-  ( ph -> C e. RR )
4 eliooord
 |-  ( C e. ( -u 1 (,) 1 ) -> ( -u 1 < C /\ C < 1 ) )
5 1 4 syl
 |-  ( ph -> ( -u 1 < C /\ C < 1 ) )
6 1red
 |-  ( ph -> 1 e. RR )
7 3 6 absltd
 |-  ( ph -> ( ( abs ` C ) < 1 <-> ( -u 1 < C /\ C < 1 ) ) )
8 5 7 mpbird
 |-  ( ph -> ( abs ` C ) < 1 )
9 3 8 jca
 |-  ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) )