Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | knoppndvlem3.c | |- ( ph -> C e. ( -u 1 (,) 1 ) ) |
|
| Assertion | knoppndvlem3 | |- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem3.c | |- ( ph -> C e. ( -u 1 (,) 1 ) ) |
|
| 2 | elioore | |- ( C e. ( -u 1 (,) 1 ) -> C e. RR ) |
|
| 3 | 1 2 | syl | |- ( ph -> C e. RR ) |
| 4 | eliooord | |- ( C e. ( -u 1 (,) 1 ) -> ( -u 1 < C /\ C < 1 ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> ( -u 1 < C /\ C < 1 ) ) |
| 6 | 1red | |- ( ph -> 1 e. RR ) |
|
| 7 | 3 6 | absltd | |- ( ph -> ( ( abs ` C ) < 1 <-> ( -u 1 < C /\ C < 1 ) ) ) |
| 8 | 5 7 | mpbird | |- ( ph -> ( abs ` C ) < 1 ) |
| 9 | 3 8 | jca | |- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |