| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem4.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem4.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem4.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppndvlem4.a |
|- ( ph -> A e. RR ) |
| 5 |
|
knoppndvlem4.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 6 |
|
knoppndvlem4.n |
|- ( ph -> N e. NN ) |
| 7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 8 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 9 |
5
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 10 |
9
|
simpld |
|- ( ph -> C e. RR ) |
| 11 |
1 2 6 10
|
knoppcnlem8 |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( CC ^m RR ) ) |
| 12 |
|
seqex |
|- seq 0 ( + , ( F ` A ) ) e. _V |
| 13 |
12
|
a1i |
|- ( ph -> seq 0 ( + , ( F ` A ) ) e. _V ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. NN ) |
| 15 |
10
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. RR ) |
| 16 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 17 |
1 2 14 15 16
|
knoppcnlem7 |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ) |
| 18 |
17
|
fveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ` A ) = ( ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ` A ) ) |
| 19 |
|
eqid |
|- ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) = ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) |
| 20 |
|
fveq2 |
|- ( v = A -> ( F ` v ) = ( F ` A ) ) |
| 21 |
20
|
seqeq3d |
|- ( v = A -> seq 0 ( + , ( F ` v ) ) = seq 0 ( + , ( F ` A ) ) ) |
| 22 |
21
|
fveq1d |
|- ( v = A -> ( seq 0 ( + , ( F ` v ) ) ` k ) = ( seq 0 ( + , ( F ` A ) ) ` k ) ) |
| 23 |
|
fvexd |
|- ( ph -> ( seq 0 ( + , ( F ` A ) ) ` k ) e. _V ) |
| 24 |
19 22 4 23
|
fvmptd3 |
|- ( ph -> ( ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ` A ) = ( seq 0 ( + , ( F ` A ) ) ` k ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ` A ) = ( seq 0 ( + , ( F ` A ) ) ` k ) ) |
| 26 |
18 25
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ` A ) = ( seq 0 ( + , ( F ` A ) ) ` k ) ) |
| 27 |
9
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
| 28 |
1 2 3 6 10 27
|
knoppcnlem9 |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) |
| 29 |
7 8 11 4 13 26 28
|
ulmclm |
|- ( ph -> seq 0 ( + , ( F ` A ) ) ~~> ( W ` A ) ) |