Metamath Proof Explorer


Theorem knoppndvlem4

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem4.t T = x x + 1 2 x
knoppndvlem4.f F = y n 0 C n T 2 N n y
knoppndvlem4.w W = w i 0 F w i
knoppndvlem4.a φ A
knoppndvlem4.c φ C 1 1
knoppndvlem4.n φ N
Assertion knoppndvlem4 φ seq 0 + F A W A

Proof

Step Hyp Ref Expression
1 knoppndvlem4.t T = x x + 1 2 x
2 knoppndvlem4.f F = y n 0 C n T 2 N n y
3 knoppndvlem4.w W = w i 0 F w i
4 knoppndvlem4.a φ A
5 knoppndvlem4.c φ C 1 1
6 knoppndvlem4.n φ N
7 nn0uz 0 = 0
8 0zd φ 0
9 5 knoppndvlem3 φ C C < 1
10 9 simpld φ C
11 1 2 6 10 knoppcnlem8 φ seq 0 f + m 0 z F z m : 0
12 seqex seq 0 + F A V
13 12 a1i φ seq 0 + F A V
14 6 adantr φ k 0 N
15 10 adantr φ k 0 C
16 simpr φ k 0 k 0
17 1 2 14 15 16 knoppcnlem7 φ k 0 seq 0 f + m 0 z F z m k = v seq 0 + F v k
18 17 fveq1d φ k 0 seq 0 f + m 0 z F z m k A = v seq 0 + F v k A
19 eqid v seq 0 + F v k = v seq 0 + F v k
20 fveq2 v = A F v = F A
21 20 seqeq3d v = A seq 0 + F v = seq 0 + F A
22 21 fveq1d v = A seq 0 + F v k = seq 0 + F A k
23 fvexd φ seq 0 + F A k V
24 19 22 4 23 fvmptd3 φ v seq 0 + F v k A = seq 0 + F A k
25 24 adantr φ k 0 v seq 0 + F v k A = seq 0 + F A k
26 18 25 eqtrd φ k 0 seq 0 f + m 0 z F z m k A = seq 0 + F A k
27 9 simprd φ C < 1
28 1 2 3 6 10 27 knoppcnlem9 φ seq 0 f + m 0 z F z m u W
29 7 8 11 4 13 26 28 ulmclm φ seq 0 + F A W A