Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppndv.t | |
|
knoppndv.f | |
||
knoppndv.w | |
||
knoppndv.c | |
||
knoppndv.n | |
||
knoppndv.1 | |
||
Assertion | knoppndv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndv.t | |
|
2 | knoppndv.f | |
|
3 | knoppndv.w | |
|
4 | knoppndv.c | |
|
5 | knoppndv.n | |
|
6 | knoppndv.1 | |
|
7 | simpl | |
|
8 | ax-resscn | |
|
9 | 8 | a1i | |
10 | 4 | knoppndvlem3 | |
11 | 10 | simpld | |
12 | 10 | simprd | |
13 | 1 2 3 5 11 12 | knoppcn | |
14 | cncff | |
|
15 | 13 14 | syl | |
16 | ssidd | |
|
17 | 9 15 16 | dvbss | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | 18 19 | sseldd | |
21 | 7 20 | jca | |
22 | ssidd | |
|
23 | 15 | adantr | |
24 | 4 | ad2antrr | |
25 | simprr | |
|
26 | simprl | |
|
27 | simplr | |
|
28 | 5 | ad2antrr | |
29 | 6 | ad2antrr | |
30 | 1 2 3 24 25 26 27 28 29 | knoppndvlem22 | |
31 | 30 | ralrimivva | |
32 | 22 23 31 | unbdqndv2 | |
33 | 21 32 | syl | |
34 | 33 | pm2.01da | |
35 | 34 | alrimiv | |
36 | eq0 | |
|
37 | 35 36 | sylibr | |