Metamath Proof Explorer


Theorem knoppndv

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021)

Ref Expression
Hypotheses knoppndv.t T = x x + 1 2 x
knoppndv.f F = y n 0 C n T 2 N n y
knoppndv.w W = w i 0 F w i
knoppndv.c φ C 1 1
knoppndv.n φ N
knoppndv.1 φ 1 < N C
Assertion knoppndv φ dom W =

Proof

Step Hyp Ref Expression
1 knoppndv.t T = x x + 1 2 x
2 knoppndv.f F = y n 0 C n T 2 N n y
3 knoppndv.w W = w i 0 F w i
4 knoppndv.c φ C 1 1
5 knoppndv.n φ N
6 knoppndv.1 φ 1 < N C
7 simpl φ h dom W φ
8 ax-resscn
9 8 a1i φ
10 4 knoppndvlem3 φ C C < 1
11 10 simpld φ C
12 10 simprd φ C < 1
13 1 2 3 5 11 12 knoppcn φ W : cn
14 cncff W : cn W :
15 13 14 syl φ W :
16 ssidd φ
17 9 15 16 dvbss φ dom W
18 17 adantr φ h dom W dom W
19 simpr φ h dom W h dom W
20 18 19 sseldd φ h dom W h
21 7 20 jca φ h dom W φ h
22 ssidd φ h
23 15 adantr φ h W :
24 4 ad2antrr φ h e + d + C 1 1
25 simprr φ h e + d + d +
26 simprl φ h e + d + e +
27 simplr φ h e + d + h
28 5 ad2antrr φ h e + d + N
29 6 ad2antrr φ h e + d + 1 < N C
30 1 2 3 24 25 26 27 28 29 knoppndvlem22 φ h e + d + a b a h h b b a < d a b e W b W a b a
31 30 ralrimivva φ h e + d + a b a h h b b a < d a b e W b W a b a
32 22 23 31 unbdqndv2 φ h ¬ h dom W
33 21 32 syl φ h dom W ¬ h dom W
34 33 pm2.01da φ ¬ h dom W
35 34 alrimiv φ h ¬ h dom W
36 eq0 dom W = h ¬ h dom W
37 35 36 sylibr φ dom W =