Metamath Proof Explorer


Theorem knoppndv

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021)

Ref Expression
Hypotheses knoppndv.t T=xx+12x
knoppndv.f F=yn0CnT2 Nny
knoppndv.w W=wi0Fwi
knoppndv.c φC11
knoppndv.n φN
knoppndv.1 φ1<NC
Assertion knoppndv φdomW=

Proof

Step Hyp Ref Expression
1 knoppndv.t T=xx+12x
2 knoppndv.f F=yn0CnT2 Nny
3 knoppndv.w W=wi0Fwi
4 knoppndv.c φC11
5 knoppndv.n φN
6 knoppndv.1 φ1<NC
7 simpl φhdomWφ
8 ax-resscn
9 8 a1i φ
10 4 knoppndvlem3 φCC<1
11 10 simpld φC
12 10 simprd φC<1
13 1 2 3 5 11 12 knoppcn φW:cn
14 cncff W:cnW:
15 13 14 syl φW:
16 ssidd φ
17 9 15 16 dvbss φdomW
18 17 adantr φhdomWdomW
19 simpr φhdomWhdomW
20 18 19 sseldd φhdomWh
21 7 20 jca φhdomWφh
22 ssidd φh
23 15 adantr φhW:
24 4 ad2antrr φhe+d+C11
25 simprr φhe+d+d+
26 simprl φhe+d+e+
27 simplr φhe+d+h
28 5 ad2antrr φhe+d+N
29 6 ad2antrr φhe+d+1<NC
30 1 2 3 24 25 26 27 28 29 knoppndvlem22 φhe+d+abahhbba<dabeWbWaba
31 30 ralrimivva φhe+d+abahhbba<dabeWbWaba
32 22 23 31 unbdqndv2 φh¬hdomW
33 21 32 syl φhdomW¬hdomW
34 33 pm2.01da φ¬hdomW
35 34 alrimiv φh¬hdomW
36 eq0 domW=h¬hdomW
37 35 36 sylibr φdomW=