Metamath Proof Explorer


Theorem knoppndvlem22

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 19-Aug-2021)

Ref Expression
Hypotheses knoppndvlem22.t T=xx+12x
knoppndvlem22.f F=yn0CnT2 Nny
knoppndvlem22.w W=wi0Fwi
knoppndvlem22.c φC11
knoppndvlem22.d φD+
knoppndvlem22.e φE+
knoppndvlem22.h φH
knoppndvlem22.n φN
knoppndvlem22.1 φ1<NC
Assertion knoppndvlem22 φabaHHbba<DabEWbWaba

Proof

Step Hyp Ref Expression
1 knoppndvlem22.t T=xx+12x
2 knoppndvlem22.f F=yn0CnT2 Nny
3 knoppndvlem22.w W=wi0Fwi
4 knoppndvlem22.c φC11
5 knoppndvlem22.d φD+
6 knoppndvlem22.e φE+
7 knoppndvlem22.h φH
8 knoppndvlem22.n φN
9 knoppndvlem22.1 φ1<NC
10 4 8 9 knoppndvlem20 φ112 NC1+
11 4 8 5 6 10 9 knoppndvlem18 φj02 Nj2<DE2 NCj112 NC1
12 eqid 112 NC1=112 NC1
13 4 adantr φj02 Nj2<DE2 NCj112 NC1C11
14 5 adantr φj02 Nj2<DE2 NCj112 NC1D+
15 6 adantr φj02 Nj2<DE2 NCj112 NC1E+
16 7 adantr φj02 Nj2<DE2 NCj112 NC1H
17 simprl φj02 Nj2<DE2 NCj112 NC1j0
18 8 adantr φj02 Nj2<DE2 NCj112 NC1N
19 9 adantr φj02 Nj2<DE2 NCj112 NC11<NC
20 simprrl φj02 Nj2<DE2 NCj112 NC12 Nj2<D
21 simprrr φj02 Nj2<DE2 NCj112 NC1E2 NCj112 NC1
22 1 2 3 12 13 14 15 16 17 18 19 20 21 knoppndvlem21 φj02 Nj2<DE2 NCj112 NC1abaHHbba<DabEWbWaba
23 11 22 rexlimddv φabaHHbba<DabEWbWaba