Metamath Proof Explorer


Theorem knoppndvlem18

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 14-Aug-2021)

Ref Expression
Hypotheses knoppndvlem18.c φ C 1 1
knoppndvlem18.n φ N
knoppndvlem18.d φ D +
knoppndvlem18.e φ E +
knoppndvlem18.g φ G +
knoppndvlem18.1 φ 1 < N C
Assertion knoppndvlem18 φ j 0 2 N j 2 < D E 2 N C j G

Proof

Step Hyp Ref Expression
1 knoppndvlem18.c φ C 1 1
2 knoppndvlem18.n φ N
3 knoppndvlem18.d φ D +
4 knoppndvlem18.e φ E +
5 knoppndvlem18.g φ G +
6 knoppndvlem18.1 φ 1 < N C
7 2re 2
8 7 a1i φ 2
9 2 nnred φ N
10 8 9 remulcld φ 2 N
11 10 adantr φ j 2 N
12 11 recnd φ j 2 N
13 2pos 0 < 2
14 13 a1i φ 0 < 2
15 2 nngt0d φ 0 < N
16 8 9 14 15 mulgt0d φ 0 < 2 N
17 16 gt0ne0d φ 2 N 0
18 17 adantr φ j 2 N 0
19 nnz j j
20 19 adantl φ j j
21 12 18 20 expnegd φ j 2 N j = 1 2 N j
22 21 adantrr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j = 1 2 N j
23 2rp 2 +
24 23 a1i φ 2 +
25 24 3 jca φ 2 + D +
26 rpmulcl 2 + D + 2 D +
27 25 26 syl φ 2 D +
28 27 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 D +
29 10 16 elrpd φ 2 N +
30 29 adantr φ j 2 N +
31 30 20 rpexpcld φ j 2 N j +
32 31 adantrr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j +
33 28 rprecred φ j if 1 2 D E G E G 1 2 D < 2 N C j 1 2 D
34 1 knoppndvlem3 φ C C < 1
35 34 simpld φ C
36 35 recnd φ C
37 36 abscld φ C
38 10 37 remulcld φ 2 N C
39 38 adantr φ j 2 N C
40 nnnn0 j j 0
41 40 adantl φ j j 0
42 39 41 reexpcld φ j 2 N C j
43 42 adantrr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N C j
44 32 rpred φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j
45 4 rpred φ E
46 5 rpred φ G
47 5 rpne0d φ G 0
48 45 46 47 redivcld φ E G
49 27 rprecred φ 1 2 D
50 48 49 ifcld φ if 1 2 D E G E G 1 2 D
51 50 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j if 1 2 D E G E G 1 2 D
52 49 48 jca φ 1 2 D E G
53 max1 1 2 D E G 1 2 D if 1 2 D E G E G 1 2 D
54 52 53 syl φ 1 2 D if 1 2 D E G E G 1 2 D
55 54 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j 1 2 D if 1 2 D E G E G 1 2 D
56 simprr φ j if 1 2 D E G E G 1 2 D < 2 N C j if 1 2 D E G E G 1 2 D < 2 N C j
57 33 51 43 55 56 lelttrd φ j if 1 2 D E G E G 1 2 D < 2 N C j 1 2 D < 2 N C j
58 37 recnd φ C
59 58 adantr φ j C
60 12 59 41 mulexpd φ j 2 N C j = 2 N j C j
61 37 adantr φ j C
62 61 41 reexpcld φ j C j
63 1red φ j 1
64 31 rpred φ j 2 N j
65 31 rpge0d φ j 0 2 N j
66 36 absge0d φ 0 C
67 1red φ 1
68 34 simprd φ C < 1
69 37 67 68 ltled φ C 1
70 37 66 69 3jca φ C 0 C C 1
71 70 adantr φ j C 0 C C 1
72 71 41 jca φ j C 0 C C 1 j 0
73 exple1 C 0 C C 1 j 0 C j 1
74 72 73 syl φ j C j 1
75 62 63 64 65 74 lemul2ad φ j 2 N j C j 2 N j 1
76 64 recnd φ j 2 N j
77 76 mulid1d φ j 2 N j 1 = 2 N j
78 75 77 breqtrd φ j 2 N j C j 2 N j
79 60 78 eqbrtrd φ j 2 N C j 2 N j
80 79 adantrr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N C j 2 N j
81 33 43 44 57 80 ltletrd φ j if 1 2 D E G E G 1 2 D < 2 N C j 1 2 D < 2 N j
82 28 32 81 ltrec1d φ j if 1 2 D E G E G 1 2 D < 2 N C j 1 2 N j < 2 D
83 22 82 eqbrtrd φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j < 2 D
84 nnnegz j j
85 84 adantl φ j j
86 11 18 85 reexpclzd φ j 2 N j
87 3 rpred φ D
88 87 adantr φ j D
89 23 a1i φ j 2 +
90 86 88 89 ltdivmuld φ j 2 N j 2 < D 2 N j < 2 D
91 90 adantrr φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j 2 < D 2 N j < 2 D
92 83 91 mpbird φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j 2 < D
93 48 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j E G
94 max2 1 2 D E G E G if 1 2 D E G E G 1 2 D
95 52 94 syl φ E G if 1 2 D E G E G 1 2 D
96 95 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j E G if 1 2 D E G E G 1 2 D
97 51 43 56 ltled φ j if 1 2 D E G E G 1 2 D < 2 N C j if 1 2 D E G E G 1 2 D 2 N C j
98 93 51 43 96 97 letrd φ j if 1 2 D E G E G 1 2 D < 2 N C j E G 2 N C j
99 45 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j E
100 5 adantr φ j if 1 2 D E G E G 1 2 D < 2 N C j G +
101 99 43 100 ledivmul2d φ j if 1 2 D E G E G 1 2 D < 2 N C j E G 2 N C j E 2 N C j G
102 98 101 mpbid φ j if 1 2 D E G E G 1 2 D < 2 N C j E 2 N C j G
103 92 102 jca φ j if 1 2 D E G E G 1 2 D < 2 N C j 2 N j 2 < D E 2 N C j G
104 1t1e1 1 1 = 1
105 104 eqcomi 1 = 1 1
106 105 a1i φ 1 = 1 1
107 9 37 remulcld φ N C
108 0le1 0 1
109 108 a1i φ 0 1
110 1lt2 1 < 2
111 110 a1i φ 1 < 2
112 67 8 67 107 109 111 109 6 ltmul12ad φ 1 1 < 2 N C
113 106 112 eqbrtrd φ 1 < 2 N C
114 8 recnd φ 2
115 9 recnd φ N
116 114 115 58 mulassd φ 2 N C = 2 N C
117 116 eqcomd φ 2 N C = 2 N C
118 113 117 breqtrd φ 1 < 2 N C
119 50 38 118 3jca φ if 1 2 D E G E G 1 2 D 2 N C 1 < 2 N C
120 expnbnd if 1 2 D E G E G 1 2 D 2 N C 1 < 2 N C j if 1 2 D E G E G 1 2 D < 2 N C j
121 119 120 syl φ j if 1 2 D E G E G 1 2 D < 2 N C j
122 103 121 reximddv φ j 2 N j 2 < D E 2 N C j G
123 nnssnn0 0
124 ssrexv 0 j 2 N j 2 < D E 2 N C j G j 0 2 N j 2 < D E 2 N C j G
125 123 124 ax-mp j 2 N j 2 < D E 2 N C j G j 0 2 N j 2 < D E 2 N C j G
126 122 125 syl φ j 0 2 N j 2 < D E 2 N C j G