Metamath Proof Explorer


Theorem ltrec1d

Description: Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
ltrec1d.2 φ1A<B
Assertion ltrec1d φ1B<A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 ltrec1d.2 φ1A<B
4 1 rpregt0d φA0<A
5 2 rpregt0d φB0<B
6 ltrec1 A0<AB0<B1A<B1B<A
7 4 5 6 syl2anc φ1A<B1B<A
8 3 7 mpbid φ1B<A