| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem18.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 2 |
|
knoppndvlem18.n |
|- ( ph -> N e. NN ) |
| 3 |
|
knoppndvlem18.d |
|- ( ph -> D e. RR+ ) |
| 4 |
|
knoppndvlem18.e |
|- ( ph -> E e. RR+ ) |
| 5 |
|
knoppndvlem18.g |
|- ( ph -> G e. RR+ ) |
| 6 |
|
knoppndvlem18.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 7 |
|
2re |
|- 2 e. RR |
| 8 |
7
|
a1i |
|- ( ph -> 2 e. RR ) |
| 9 |
2
|
nnred |
|- ( ph -> N e. RR ) |
| 10 |
8 9
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( 2 x. N ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( 2 x. N ) e. CC ) |
| 13 |
|
2pos |
|- 0 < 2 |
| 14 |
13
|
a1i |
|- ( ph -> 0 < 2 ) |
| 15 |
2
|
nngt0d |
|- ( ph -> 0 < N ) |
| 16 |
8 9 14 15
|
mulgt0d |
|- ( ph -> 0 < ( 2 x. N ) ) |
| 17 |
16
|
gt0ne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( 2 x. N ) =/= 0 ) |
| 19 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. ZZ ) |
| 21 |
12 18 20
|
expnegd |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) ^ -u j ) = ( 1 / ( ( 2 x. N ) ^ j ) ) ) |
| 22 |
21
|
adantrr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( 2 x. N ) ^ -u j ) = ( 1 / ( ( 2 x. N ) ^ j ) ) ) |
| 23 |
|
2rp |
|- 2 e. RR+ |
| 24 |
23
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 25 |
24 3
|
jca |
|- ( ph -> ( 2 e. RR+ /\ D e. RR+ ) ) |
| 26 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ D e. RR+ ) -> ( 2 x. D ) e. RR+ ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( 2 x. D ) e. RR+ ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 2 x. D ) e. RR+ ) |
| 29 |
10 16
|
elrpd |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( 2 x. N ) e. RR+ ) |
| 31 |
30 20
|
rpexpcld |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) ^ j ) e. RR+ ) |
| 32 |
31
|
adantrr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( 2 x. N ) ^ j ) e. RR+ ) |
| 33 |
28
|
rprecred |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 1 / ( 2 x. D ) ) e. RR ) |
| 34 |
1
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 35 |
34
|
simpld |
|- ( ph -> C e. RR ) |
| 36 |
35
|
recnd |
|- ( ph -> C e. CC ) |
| 37 |
36
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 38 |
10 37
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 40 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. NN0 ) |
| 42 |
39 41
|
reexpcld |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) e. RR ) |
| 43 |
42
|
adantrr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) e. RR ) |
| 44 |
32
|
rpred |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( 2 x. N ) ^ j ) e. RR ) |
| 45 |
4
|
rpred |
|- ( ph -> E e. RR ) |
| 46 |
5
|
rpred |
|- ( ph -> G e. RR ) |
| 47 |
5
|
rpne0d |
|- ( ph -> G =/= 0 ) |
| 48 |
45 46 47
|
redivcld |
|- ( ph -> ( E / G ) e. RR ) |
| 49 |
27
|
rprecred |
|- ( ph -> ( 1 / ( 2 x. D ) ) e. RR ) |
| 50 |
48 49
|
ifcld |
|- ( ph -> if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) e. RR ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) e. RR ) |
| 52 |
49 48
|
jca |
|- ( ph -> ( ( 1 / ( 2 x. D ) ) e. RR /\ ( E / G ) e. RR ) ) |
| 53 |
|
max1 |
|- ( ( ( 1 / ( 2 x. D ) ) e. RR /\ ( E / G ) e. RR ) -> ( 1 / ( 2 x. D ) ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 54 |
52 53
|
syl |
|- ( ph -> ( 1 / ( 2 x. D ) ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 1 / ( 2 x. D ) ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 56 |
|
simprr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 57 |
33 51 43 55 56
|
lelttrd |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 1 / ( 2 x. D ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 58 |
37
|
recnd |
|- ( ph -> ( abs ` C ) e. CC ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( abs ` C ) e. CC ) |
| 60 |
12 59 41
|
mulexpd |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) = ( ( ( 2 x. N ) ^ j ) x. ( ( abs ` C ) ^ j ) ) ) |
| 61 |
37
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( abs ` C ) e. RR ) |
| 62 |
61 41
|
reexpcld |
|- ( ( ph /\ j e. NN ) -> ( ( abs ` C ) ^ j ) e. RR ) |
| 63 |
|
1red |
|- ( ( ph /\ j e. NN ) -> 1 e. RR ) |
| 64 |
31
|
rpred |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) ^ j ) e. RR ) |
| 65 |
31
|
rpge0d |
|- ( ( ph /\ j e. NN ) -> 0 <_ ( ( 2 x. N ) ^ j ) ) |
| 66 |
36
|
absge0d |
|- ( ph -> 0 <_ ( abs ` C ) ) |
| 67 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 68 |
34
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
| 69 |
37 67 68
|
ltled |
|- ( ph -> ( abs ` C ) <_ 1 ) |
| 70 |
37 66 69
|
3jca |
|- ( ph -> ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) /\ ( abs ` C ) <_ 1 ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) /\ ( abs ` C ) <_ 1 ) ) |
| 72 |
71 41
|
jca |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) /\ ( abs ` C ) <_ 1 ) /\ j e. NN0 ) ) |
| 73 |
|
exple1 |
|- ( ( ( ( abs ` C ) e. RR /\ 0 <_ ( abs ` C ) /\ ( abs ` C ) <_ 1 ) /\ j e. NN0 ) -> ( ( abs ` C ) ^ j ) <_ 1 ) |
| 74 |
72 73
|
syl |
|- ( ( ph /\ j e. NN ) -> ( ( abs ` C ) ^ j ) <_ 1 ) |
| 75 |
62 63 64 65 74
|
lemul2ad |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) ^ j ) x. ( ( abs ` C ) ^ j ) ) <_ ( ( ( 2 x. N ) ^ j ) x. 1 ) ) |
| 76 |
64
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) ^ j ) e. CC ) |
| 77 |
76
|
mulridd |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) ^ j ) x. 1 ) = ( ( 2 x. N ) ^ j ) ) |
| 78 |
75 77
|
breqtrd |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) ^ j ) x. ( ( abs ` C ) ^ j ) ) <_ ( ( 2 x. N ) ^ j ) ) |
| 79 |
60 78
|
eqbrtrd |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) <_ ( ( 2 x. N ) ^ j ) ) |
| 80 |
79
|
adantrr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) <_ ( ( 2 x. N ) ^ j ) ) |
| 81 |
33 43 44 57 80
|
ltletrd |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 1 / ( 2 x. D ) ) < ( ( 2 x. N ) ^ j ) ) |
| 82 |
28 32 81
|
ltrec1d |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( 1 / ( ( 2 x. N ) ^ j ) ) < ( 2 x. D ) ) |
| 83 |
22 82
|
eqbrtrd |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( 2 x. N ) ^ -u j ) < ( 2 x. D ) ) |
| 84 |
|
nnnegz |
|- ( j e. NN -> -u j e. ZZ ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ j e. NN ) -> -u j e. ZZ ) |
| 86 |
11 18 85
|
reexpclzd |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. N ) ^ -u j ) e. RR ) |
| 87 |
3
|
rpred |
|- ( ph -> D e. RR ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ j e. NN ) -> D e. RR ) |
| 89 |
23
|
a1i |
|- ( ( ph /\ j e. NN ) -> 2 e. RR+ ) |
| 90 |
86 88 89
|
ltdivmuld |
|- ( ( ph /\ j e. NN ) -> ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D <-> ( ( 2 x. N ) ^ -u j ) < ( 2 x. D ) ) ) |
| 91 |
90
|
adantrr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D <-> ( ( 2 x. N ) ^ -u j ) < ( 2 x. D ) ) ) |
| 92 |
83 91
|
mpbird |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D ) |
| 93 |
48
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( E / G ) e. RR ) |
| 94 |
|
max2 |
|- ( ( ( 1 / ( 2 x. D ) ) e. RR /\ ( E / G ) e. RR ) -> ( E / G ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 95 |
52 94
|
syl |
|- ( ph -> ( E / G ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( E / G ) <_ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) ) |
| 97 |
51 43 56
|
ltled |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) <_ ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 98 |
93 51 43 96 97
|
letrd |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( E / G ) <_ ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 99 |
45
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> E e. RR ) |
| 100 |
5
|
adantr |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> G e. RR+ ) |
| 101 |
99 43 100
|
ledivmul2d |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( E / G ) <_ ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) <-> E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) |
| 102 |
98 101
|
mpbid |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) |
| 103 |
92 102
|
jca |
|- ( ( ph /\ ( j e. NN /\ if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) ) -> ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) |
| 104 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 105 |
104
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
| 106 |
105
|
a1i |
|- ( ph -> 1 = ( 1 x. 1 ) ) |
| 107 |
9 37
|
remulcld |
|- ( ph -> ( N x. ( abs ` C ) ) e. RR ) |
| 108 |
|
0le1 |
|- 0 <_ 1 |
| 109 |
108
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 110 |
|
1lt2 |
|- 1 < 2 |
| 111 |
110
|
a1i |
|- ( ph -> 1 < 2 ) |
| 112 |
67 8 67 107 109 111 109 6
|
ltmul12ad |
|- ( ph -> ( 1 x. 1 ) < ( 2 x. ( N x. ( abs ` C ) ) ) ) |
| 113 |
106 112
|
eqbrtrd |
|- ( ph -> 1 < ( 2 x. ( N x. ( abs ` C ) ) ) ) |
| 114 |
8
|
recnd |
|- ( ph -> 2 e. CC ) |
| 115 |
9
|
recnd |
|- ( ph -> N e. CC ) |
| 116 |
114 115 58
|
mulassd |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) = ( 2 x. ( N x. ( abs ` C ) ) ) ) |
| 117 |
116
|
eqcomd |
|- ( ph -> ( 2 x. ( N x. ( abs ` C ) ) ) = ( ( 2 x. N ) x. ( abs ` C ) ) ) |
| 118 |
113 117
|
breqtrd |
|- ( ph -> 1 < ( ( 2 x. N ) x. ( abs ` C ) ) ) |
| 119 |
50 38 118
|
3jca |
|- ( ph -> ( if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) e. RR /\ ( ( 2 x. N ) x. ( abs ` C ) ) e. RR /\ 1 < ( ( 2 x. N ) x. ( abs ` C ) ) ) ) |
| 120 |
|
expnbnd |
|- ( ( if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) e. RR /\ ( ( 2 x. N ) x. ( abs ` C ) ) e. RR /\ 1 < ( ( 2 x. N ) x. ( abs ` C ) ) ) -> E. j e. NN if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 121 |
119 120
|
syl |
|- ( ph -> E. j e. NN if ( ( 1 / ( 2 x. D ) ) <_ ( E / G ) , ( E / G ) , ( 1 / ( 2 x. D ) ) ) < ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) ) |
| 122 |
103 121
|
reximddv |
|- ( ph -> E. j e. NN ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) |
| 123 |
|
nnssnn0 |
|- NN C_ NN0 |
| 124 |
|
ssrexv |
|- ( NN C_ NN0 -> ( E. j e. NN ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) -> E. j e. NN0 ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) ) |
| 125 |
123 124
|
ax-mp |
|- ( E. j e. NN ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) -> E. j e. NN0 ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) |
| 126 |
122 125
|
syl |
|- ( ph -> E. j e. NN0 ( ( ( ( 2 x. N ) ^ -u j ) / 2 ) < D /\ E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ j ) x. G ) ) ) |