Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem19.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) |
2 |
|
knoppndvlem19.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) |
3 |
|
knoppndvlem19.j |
|- ( ph -> J e. NN0 ) |
4 |
|
knoppndvlem19.h |
|- ( ph -> H e. RR ) |
5 |
|
knoppndvlem19.n |
|- ( ph -> N e. NN ) |
6 |
|
2re |
|- 2 e. RR |
7 |
6
|
a1i |
|- ( ph -> 2 e. RR ) |
8 |
5
|
nnred |
|- ( ph -> N e. RR ) |
9 |
7 8
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
10 |
|
2pos |
|- 0 < 2 |
11 |
10
|
a1i |
|- ( ph -> 0 < 2 ) |
12 |
5
|
nngt0d |
|- ( ph -> 0 < N ) |
13 |
7 8 11 12
|
mulgt0d |
|- ( ph -> 0 < ( 2 x. N ) ) |
14 |
13
|
gt0ne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
15 |
3
|
nn0zd |
|- ( ph -> J e. ZZ ) |
16 |
15
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
17 |
9 14 16
|
reexpclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR ) |
18 |
7
|
recnd |
|- ( ph -> 2 e. CC ) |
19 |
8
|
recnd |
|- ( ph -> N e. CC ) |
20 |
18 19 14
|
mulne0bad |
|- ( ph -> 2 =/= 0 ) |
21 |
17 7 20
|
redivcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR ) |
22 |
9 16 13
|
3jca |
|- ( ph -> ( ( 2 x. N ) e. RR /\ -u J e. ZZ /\ 0 < ( 2 x. N ) ) ) |
23 |
|
expgt0 |
|- ( ( ( 2 x. N ) e. RR /\ -u J e. ZZ /\ 0 < ( 2 x. N ) ) -> 0 < ( ( 2 x. N ) ^ -u J ) ) |
24 |
22 23
|
syl |
|- ( ph -> 0 < ( ( 2 x. N ) ^ -u J ) ) |
25 |
17 7 24 11
|
divgt0d |
|- ( ph -> 0 < ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
26 |
25
|
gt0ne0d |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) =/= 0 ) |
27 |
4 21 26
|
redivcld |
|- ( ph -> ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) e. RR ) |
28 |
27
|
flcld |
|- ( ph -> ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) e. ZZ ) |
29 |
1
|
a1i |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) |
30 |
|
id |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) |
31 |
30
|
oveq2d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) ) |
32 |
29 31
|
eqtrd |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) ) |
33 |
32
|
breq1d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( A <_ H <-> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ H ) ) |
34 |
2
|
a1i |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) |
35 |
30
|
oveq1d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( m + 1 ) = ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) |
36 |
35
|
oveq2d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) |
37 |
34 36
|
eqtrd |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) |
38 |
37
|
breq2d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( H <_ B <-> H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) ) |
39 |
33 38
|
anbi12d |
|- ( m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) -> ( ( A <_ H /\ H <_ B ) <-> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) ) ) |
40 |
39
|
adantl |
|- ( ( ph /\ m = ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) -> ( ( A <_ H /\ H <_ B ) <-> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) ) ) |
41 |
28
|
zred |
|- ( ph -> ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) e. RR ) |
42 |
|
0red |
|- ( ph -> 0 e. RR ) |
43 |
42 21 25
|
ltled |
|- ( ph -> 0 <_ ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
44 |
|
flle |
|- ( ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) e. RR -> ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) <_ ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
45 |
27 44
|
syl |
|- ( ph -> ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) <_ ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) |
46 |
41 27 21 43 45
|
lemul2ad |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) |
47 |
4
|
recnd |
|- ( ph -> H e. CC ) |
48 |
21
|
recnd |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
49 |
47 48 26
|
divcan2d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) = H ) |
50 |
46 49
|
breqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ H ) |
51 |
49
|
eqcomd |
|- ( ph -> H = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) |
52 |
|
peano2re |
|- ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) e. RR -> ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) e. RR ) |
53 |
41 52
|
syl |
|- ( ph -> ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) e. RR ) |
54 |
|
fllep1 |
|- ( ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) e. RR -> ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) <_ ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) |
55 |
27 54
|
syl |
|- ( ph -> ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) <_ ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) |
56 |
27 53 21 43 55
|
lemul2ad |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) |
57 |
51 56
|
eqbrtrd |
|- ( ph -> H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) |
58 |
50 57
|
jca |
|- ( ph -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( |_ ` ( H / ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) ) + 1 ) ) ) ) |
59 |
28 40 58
|
rspcedvd |
|- ( ph -> E. m e. ZZ ( A <_ H /\ H <_ B ) ) |