Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem20.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
2 |
|
knoppndvlem20.n |
|- ( ph -> N e. NN ) |
3 |
|
knoppndvlem20.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
4 |
1 2 3
|
knoppndvlem12 |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) =/= 1 /\ 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
5 |
4
|
simprd |
|- ( ph -> 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
6 |
|
2re |
|- 2 e. RR |
7 |
6
|
a1i |
|- ( ph -> 2 e. RR ) |
8 |
2
|
nnred |
|- ( ph -> N e. RR ) |
9 |
7 8
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
10 |
1
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
11 |
10
|
simpld |
|- ( ph -> C e. RR ) |
12 |
11
|
recnd |
|- ( ph -> C e. CC ) |
13 |
12
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
14 |
9 13
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
15 |
|
1red |
|- ( ph -> 1 e. RR ) |
16 |
14 15
|
resubcld |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR ) |
17 |
|
0red |
|- ( ph -> 0 e. RR ) |
18 |
|
0lt1 |
|- 0 < 1 |
19 |
18
|
a1i |
|- ( ph -> 0 < 1 ) |
20 |
17 15 16 19 5
|
lttrd |
|- ( ph -> 0 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) |
21 |
16 20
|
elrpd |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) e. RR+ ) |
22 |
21
|
recgt1d |
|- ( ph -> ( 1 < ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) <-> ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) < 1 ) ) |
23 |
5 22
|
mpbid |
|- ( ph -> ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) < 1 ) |
24 |
21
|
rprecred |
|- ( ph -> ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) e. RR ) |
25 |
24 15
|
jca |
|- ( ph -> ( ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) e. RR /\ 1 e. RR ) ) |
26 |
|
difrp |
|- ( ( ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) e. RR /\ 1 e. RR ) -> ( ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) < 1 <-> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR+ ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) < 1 <-> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR+ ) ) |
28 |
23 27
|
mpbid |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR+ ) |