| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem21.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem21.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem21.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppndvlem21.g |
|- G = ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) |
| 5 |
|
knoppndvlem21.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 6 |
|
knoppndvlem21.d |
|- ( ph -> D e. RR+ ) |
| 7 |
|
knoppndvlem21.e |
|- ( ph -> E e. RR+ ) |
| 8 |
|
knoppndvlem21.h |
|- ( ph -> H e. RR ) |
| 9 |
|
knoppndvlem21.j |
|- ( ph -> J e. NN0 ) |
| 10 |
|
knoppndvlem21.n |
|- ( ph -> N e. NN ) |
| 11 |
|
knoppndvlem21.1 |
|- ( ph -> 1 < ( N x. ( abs ` C ) ) ) |
| 12 |
|
knoppndvlem21.2 |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) < D ) |
| 13 |
|
knoppndvlem21.3 |
|- ( ph -> E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) ) |
| 14 |
|
eqid |
|- ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) |
| 15 |
|
eqid |
|- ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) |
| 16 |
14 15 9 8 10
|
knoppndvlem19 |
|- ( ph -> E. m e. ZZ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 17 |
|
2re |
|- 2 e. RR |
| 18 |
17
|
a1i |
|- ( ph -> 2 e. RR ) |
| 19 |
10
|
nnred |
|- ( ph -> N e. RR ) |
| 20 |
18 19
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 21 |
|
2pos |
|- 0 < 2 |
| 22 |
21
|
a1i |
|- ( ph -> 0 < 2 ) |
| 23 |
10
|
nngt0d |
|- ( ph -> 0 < N ) |
| 24 |
18 19 22 23
|
mulgt0d |
|- ( ph -> 0 < ( 2 x. N ) ) |
| 25 |
24
|
gt0ne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
| 26 |
9
|
nn0zd |
|- ( ph -> J e. ZZ ) |
| 27 |
26
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
| 28 |
20 25 27
|
reexpclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. RR ) |
| 29 |
28
|
rehalfcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR ) |
| 31 |
|
simpr |
|- ( ( ph /\ m e. ZZ ) -> m e. ZZ ) |
| 32 |
31
|
zred |
|- ( ( ph /\ m e. ZZ ) -> m e. RR ) |
| 33 |
30 32
|
remulcld |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) e. RR ) |
| 34 |
33
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) e. RR ) |
| 35 |
|
peano2re |
|- ( m e. RR -> ( m + 1 ) e. RR ) |
| 36 |
32 35
|
syl |
|- ( ( ph /\ m e. ZZ ) -> ( m + 1 ) e. RR ) |
| 37 |
30 36
|
jca |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR /\ ( m + 1 ) e. RR ) ) |
| 38 |
|
remulcl |
|- ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. RR /\ ( m + 1 ) e. RR ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) e. RR ) |
| 39 |
37 38
|
syl |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) e. RR ) |
| 40 |
39
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) e. RR ) |
| 41 |
|
simprr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 42 |
9
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> J e. NN0 ) |
| 43 |
10
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> N e. NN ) |
| 44 |
14 15 42 31 43
|
knoppndvlem16 |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 45 |
12
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) < D ) |
| 46 |
44 45
|
eqbrtrd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D ) |
| 47 |
20 27 24
|
3jca |
|- ( ph -> ( ( 2 x. N ) e. RR /\ -u J e. ZZ /\ 0 < ( 2 x. N ) ) ) |
| 48 |
|
expgt0 |
|- ( ( ( 2 x. N ) e. RR /\ -u J e. ZZ /\ 0 < ( 2 x. N ) ) -> 0 < ( ( 2 x. N ) ^ -u J ) ) |
| 49 |
47 48
|
syl |
|- ( ph -> 0 < ( ( 2 x. N ) ^ -u J ) ) |
| 50 |
28 18 49 22
|
divgt0d |
|- ( ph -> 0 < ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> 0 < ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 52 |
44
|
eqcomd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) |
| 53 |
51 52
|
breqtrd |
|- ( ( ph /\ m e. ZZ ) -> 0 < ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) |
| 54 |
33 39
|
posdifd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) < ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) <-> 0 < ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 55 |
53 54
|
mpbird |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) < ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) |
| 56 |
33 55
|
ltned |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) |
| 57 |
46 56
|
jca |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 58 |
57
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 59 |
7
|
rpred |
|- ( ph -> E e. RR ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> E e. RR ) |
| 61 |
5
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 62 |
61
|
simpld |
|- ( ph -> C e. RR ) |
| 63 |
62
|
recnd |
|- ( ph -> C e. CC ) |
| 64 |
63
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 65 |
20 64
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 66 |
65 9
|
reexpcld |
|- ( ph -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) e. RR ) |
| 67 |
4
|
a1i |
|- ( ph -> G = ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) |
| 68 |
5 10 11
|
knoppndvlem20 |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR+ ) |
| 69 |
68
|
rpred |
|- ( ph -> ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) e. RR ) |
| 70 |
67 69
|
eqeltrd |
|- ( ph -> G e. RR ) |
| 71 |
66 70
|
remulcld |
|- ( ph -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) e. RR ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) e. RR ) |
| 73 |
62
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> C e. RR ) |
| 74 |
61
|
simprd |
|- ( ph -> ( abs ` C ) < 1 ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> ( abs ` C ) < 1 ) |
| 76 |
1 2 3 39 43 73 75
|
knoppcld |
|- ( ( ph /\ m e. ZZ ) -> ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) e. CC ) |
| 77 |
1 2 3 33 43 73 75
|
knoppcld |
|- ( ( ph /\ m e. ZZ ) -> ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) e. CC ) |
| 78 |
76 77
|
subcld |
|- ( ( ph /\ m e. ZZ ) -> ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) e. CC ) |
| 79 |
78
|
abscld |
|- ( ( ph /\ m e. ZZ ) -> ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) e. RR ) |
| 80 |
44 30
|
eqeltrd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) e. RR ) |
| 81 |
53
|
gt0ne0d |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) =/= 0 ) |
| 82 |
79 80 81
|
redivcld |
|- ( ( ph /\ m e. ZZ ) -> ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) e. RR ) |
| 83 |
13
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> E <_ ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) ) |
| 84 |
4
|
oveq2i |
|- ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) |
| 85 |
84
|
a1i |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) = ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) ) |
| 86 |
5
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> C e. ( -u 1 (,) 1 ) ) |
| 87 |
11
|
adantr |
|- ( ( ph /\ m e. ZZ ) -> 1 < ( N x. ( abs ` C ) ) ) |
| 88 |
1 2 3 14 15 86 42 31 43 87
|
knoppndvlem17 |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. ( 1 - ( 1 / ( ( ( 2 x. N ) x. ( abs ` C ) ) - 1 ) ) ) ) <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 89 |
85 88
|
eqbrtrd |
|- ( ( ph /\ m e. ZZ ) -> ( ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ J ) x. G ) <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 90 |
60 72 82 83 89
|
letrd |
|- ( ( ph /\ m e. ZZ ) -> E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 91 |
90
|
adantrr |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 92 |
41 58 91
|
3jca |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) |
| 93 |
34 40 92
|
3jca |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) e. RR /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) e. RR /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) ) |
| 94 |
|
breq1 |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( a <_ H <-> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H ) ) |
| 95 |
94
|
anbi1d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( a <_ H /\ H <_ b ) <-> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ b ) ) ) |
| 96 |
|
oveq2 |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( b - a ) = ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) |
| 97 |
96
|
breq1d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( b - a ) < D <-> ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D ) ) |
| 98 |
|
neeq1 |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( a =/= b <-> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b ) ) |
| 99 |
97 98
|
anbi12d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( ( b - a ) < D /\ a =/= b ) <-> ( ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b ) ) ) |
| 100 |
|
fveq2 |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( W ` a ) = ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) |
| 101 |
100
|
oveq2d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( W ` b ) - ( W ` a ) ) = ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 102 |
101
|
fveq2d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( abs ` ( ( W ` b ) - ( W ` a ) ) ) = ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) |
| 103 |
102 96
|
oveq12d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) = ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 104 |
103
|
breq2d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) <-> E <_ ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) |
| 105 |
95 99 104
|
3anbi123d |
|- ( a = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) -> ( ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) <-> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ b ) /\ ( ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) ) |
| 106 |
|
breq2 |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( H <_ b <-> H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 107 |
106
|
anbi2d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ b ) <-> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) |
| 108 |
|
oveq1 |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) |
| 109 |
108
|
breq1d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D <-> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D ) ) |
| 110 |
|
neeq2 |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b <-> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 111 |
109 110
|
anbi12d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b ) <-> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) |
| 112 |
|
fveq2 |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( W ` b ) = ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) |
| 113 |
112
|
fvoveq1d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) = ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) |
| 114 |
113 108
|
oveq12d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) = ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) |
| 115 |
114
|
breq2d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( E <_ ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) <-> E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) |
| 116 |
107 111 115
|
3anbi123d |
|- ( b = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) -> ( ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ b ) /\ ( ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( b - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) <-> ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) ) |
| 117 |
105 116
|
rspc2ev |
|- ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) e. RR /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) e. RR /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ ( ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) < D /\ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) =/= ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) /\ E <_ ( ( abs ` ( ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) - ( W ` ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) / ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) ) ) ) ) -> E. a e. RR E. b e. RR ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |
| 118 |
93 117
|
syl |
|- ( ( ph /\ ( m e. ZZ /\ ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. m ) <_ H /\ H <_ ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( m + 1 ) ) ) ) ) -> E. a e. RR E. b e. RR ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |
| 119 |
16 118
|
rexlimddv |
|- ( ph -> E. a e. RR E. b e. RR ( ( a <_ H /\ H <_ b ) /\ ( ( b - a ) < D /\ a =/= b ) /\ E <_ ( ( abs ` ( ( W ` b ) - ( W ` a ) ) ) / ( b - a ) ) ) ) |