| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem16.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
| 2 |
|
knoppndvlem16.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) |
| 3 |
|
knoppndvlem16.j |
|- ( ph -> J e. NN0 ) |
| 4 |
|
knoppndvlem16.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
knoppndvlem16.n |
|- ( ph -> N e. NN ) |
| 6 |
2
|
a1i |
|- ( ph -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) ) |
| 7 |
1
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
| 8 |
6 7
|
oveq12d |
|- ( ph -> ( B - A ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
| 9 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 10 |
5
|
nncnd |
|- ( ph -> N e. CC ) |
| 11 |
9 10
|
mulcld |
|- ( ph -> ( 2 x. N ) e. CC ) |
| 12 |
|
2ne0 |
|- 2 =/= 0 |
| 13 |
12
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 14 |
5
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 15 |
9 10 13 14
|
mulne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
| 16 |
3
|
nn0zd |
|- ( ph -> J e. ZZ ) |
| 17 |
16
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
| 18 |
11 15 17
|
expclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
| 19 |
9 10 15
|
mulne0bad |
|- ( ph -> 2 =/= 0 ) |
| 20 |
18 9 19
|
divcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
| 21 |
4
|
zcnd |
|- ( ph -> M e. CC ) |
| 22 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 23 |
21 22
|
addcld |
|- ( ph -> ( M + 1 ) e. CC ) |
| 24 |
20 23 21
|
subdid |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
| 25 |
24
|
eqcomd |
|- ( ph -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) ) |
| 26 |
21 22
|
pncan2d |
|- ( ph -> ( ( M + 1 ) - M ) = 1 ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. 1 ) ) |
| 28 |
20
|
mulridd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. 1 ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 29 |
27 28
|
eqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
| 30 |
8 25 29
|
3eqtrd |
|- ( ph -> ( B - A ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |