Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem16.a |
|- A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) |
2 |
|
knoppndvlem16.b |
|- B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) |
3 |
|
knoppndvlem16.j |
|- ( ph -> J e. NN0 ) |
4 |
|
knoppndvlem16.m |
|- ( ph -> M e. ZZ ) |
5 |
|
knoppndvlem16.n |
|- ( ph -> N e. NN ) |
6 |
2
|
a1i |
|- ( ph -> B = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) ) |
7 |
1
|
a1i |
|- ( ph -> A = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) |
8 |
6 7
|
oveq12d |
|- ( ph -> ( B - A ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
9 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
10 |
5
|
nncnd |
|- ( ph -> N e. CC ) |
11 |
9 10
|
mulcld |
|- ( ph -> ( 2 x. N ) e. CC ) |
12 |
|
2ne0 |
|- 2 =/= 0 |
13 |
12
|
a1i |
|- ( ph -> 2 =/= 0 ) |
14 |
5
|
nnne0d |
|- ( ph -> N =/= 0 ) |
15 |
9 10 13 14
|
mulne0d |
|- ( ph -> ( 2 x. N ) =/= 0 ) |
16 |
3
|
nn0zd |
|- ( ph -> J e. ZZ ) |
17 |
16
|
znegcld |
|- ( ph -> -u J e. ZZ ) |
18 |
11 15 17
|
expclzd |
|- ( ph -> ( ( 2 x. N ) ^ -u J ) e. CC ) |
19 |
9 10 15
|
mulne0bad |
|- ( ph -> 2 =/= 0 ) |
20 |
18 9 19
|
divcld |
|- ( ph -> ( ( ( 2 x. N ) ^ -u J ) / 2 ) e. CC ) |
21 |
4
|
zcnd |
|- ( ph -> M e. CC ) |
22 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
23 |
21 22
|
addcld |
|- ( ph -> ( M + 1 ) e. CC ) |
24 |
20 23 21
|
subdid |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) ) |
25 |
24
|
eqcomd |
|- ( ph -> ( ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( M + 1 ) ) - ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. M ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) ) |
26 |
21 22
|
pncan2d |
|- ( ph -> ( ( M + 1 ) - M ) = 1 ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. 1 ) ) |
28 |
20
|
mulid1d |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. 1 ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
29 |
27 28
|
eqtrd |
|- ( ph -> ( ( ( ( 2 x. N ) ^ -u J ) / 2 ) x. ( ( M + 1 ) - M ) ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |
30 |
8 25 29
|
3eqtrd |
|- ( ph -> ( B - A ) = ( ( ( 2 x. N ) ^ -u J ) / 2 ) ) |