Metamath Proof Explorer


Theorem knoppndvlem16

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 19-Jul-2021)

Ref Expression
Hypotheses knoppndvlem16.a A = 2 N J 2 M
knoppndvlem16.b B = 2 N J 2 M + 1
knoppndvlem16.j φ J 0
knoppndvlem16.m φ M
knoppndvlem16.n φ N
Assertion knoppndvlem16 φ B A = 2 N J 2

Proof

Step Hyp Ref Expression
1 knoppndvlem16.a A = 2 N J 2 M
2 knoppndvlem16.b B = 2 N J 2 M + 1
3 knoppndvlem16.j φ J 0
4 knoppndvlem16.m φ M
5 knoppndvlem16.n φ N
6 2 a1i φ B = 2 N J 2 M + 1
7 1 a1i φ A = 2 N J 2 M
8 6 7 oveq12d φ B A = 2 N J 2 M + 1 2 N J 2 M
9 2cnd φ 2
10 5 nncnd φ N
11 9 10 mulcld φ 2 N
12 2ne0 2 0
13 12 a1i φ 2 0
14 5 nnne0d φ N 0
15 9 10 13 14 mulne0d φ 2 N 0
16 3 nn0zd φ J
17 16 znegcld φ J
18 11 15 17 expclzd φ 2 N J
19 9 10 15 mulne0bad φ 2 0
20 18 9 19 divcld φ 2 N J 2
21 4 zcnd φ M
22 1cnd φ 1
23 21 22 addcld φ M + 1
24 20 23 21 subdid φ 2 N J 2 M + 1 - M = 2 N J 2 M + 1 2 N J 2 M
25 24 eqcomd φ 2 N J 2 M + 1 2 N J 2 M = 2 N J 2 M + 1 - M
26 21 22 pncan2d φ M + 1 - M = 1
27 26 oveq2d φ 2 N J 2 M + 1 - M = 2 N J 2 1
28 20 mulid1d φ 2 N J 2 1 = 2 N J 2
29 27 28 eqtrd φ 2 N J 2 M + 1 - M = 2 N J 2
30 8 25 29 3eqtrd φ B A = 2 N J 2