Metamath Proof Explorer


Theorem knoppndvlem16

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 19-Jul-2021)

Ref Expression
Hypotheses knoppndvlem16.a A=2 NJ2 M
knoppndvlem16.b B=2 NJ2M+1
knoppndvlem16.j φJ0
knoppndvlem16.m φM
knoppndvlem16.n φN
Assertion knoppndvlem16 φBA=2 NJ2

Proof

Step Hyp Ref Expression
1 knoppndvlem16.a A=2 NJ2 M
2 knoppndvlem16.b B=2 NJ2M+1
3 knoppndvlem16.j φJ0
4 knoppndvlem16.m φM
5 knoppndvlem16.n φN
6 2 a1i φB=2 NJ2M+1
7 1 a1i φA=2 NJ2 M
8 6 7 oveq12d φBA=2 NJ2M+12 NJ2 M
9 2cnd φ2
10 5 nncnd φN
11 9 10 mulcld φ2 N
12 2ne0 20
13 12 a1i φ20
14 5 nnne0d φN0
15 9 10 13 14 mulne0d φ2 N0
16 3 nn0zd φJ
17 16 znegcld φJ
18 11 15 17 expclzd φ2 NJ
19 9 10 15 mulne0bad φ20
20 18 9 19 divcld φ2 NJ2
21 4 zcnd φM
22 1cnd φ1
23 21 22 addcld φM+1
24 20 23 21 subdid φ2 NJ2M+1-M=2 NJ2M+12 NJ2 M
25 24 eqcomd φ2 NJ2M+12 NJ2 M=2 NJ2M+1-M
26 21 22 pncan2d φM+1-M=1
27 26 oveq2d φ2 NJ2M+1-M=2 NJ21
28 20 mulridd φ2 NJ21=2 NJ2
29 27 28 eqtrd φ2 NJ2M+1-M=2 NJ2
30 8 25 29 3eqtrd φBA=2 NJ2