Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 19-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppndvlem16.a | |
|
knoppndvlem16.b | |
||
knoppndvlem16.j | |
||
knoppndvlem16.m | |
||
knoppndvlem16.n | |
||
Assertion | knoppndvlem16 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem16.a | |
|
2 | knoppndvlem16.b | |
|
3 | knoppndvlem16.j | |
|
4 | knoppndvlem16.m | |
|
5 | knoppndvlem16.n | |
|
6 | 2 | a1i | |
7 | 1 | a1i | |
8 | 6 7 | oveq12d | |
9 | 2cnd | |
|
10 | 5 | nncnd | |
11 | 9 10 | mulcld | |
12 | 2ne0 | |
|
13 | 12 | a1i | |
14 | 5 | nnne0d | |
15 | 9 10 13 14 | mulne0d | |
16 | 3 | nn0zd | |
17 | 16 | znegcld | |
18 | 11 15 17 | expclzd | |
19 | 9 10 15 | mulne0bad | |
20 | 18 9 19 | divcld | |
21 | 4 | zcnd | |
22 | 1cnd | |
|
23 | 21 22 | addcld | |
24 | 20 23 21 | subdid | |
25 | 24 | eqcomd | |
26 | 21 22 | pncan2d | |
27 | 26 | oveq2d | |
28 | 20 | mulridd | |
29 | 27 28 | eqtrd | |
30 | 8 25 29 | 3eqtrd | |