Metamath Proof Explorer


Theorem knoppndvlem17

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 12-Aug-2021)

Ref Expression
Hypotheses knoppndvlem17.t T=xx+12x
knoppndvlem17.f F=yn0CnT2 Nny
knoppndvlem17.w W=wi0Fwi
knoppndvlem17.a A=2 NJ2 M
knoppndvlem17.b B=2 NJ2M+1
knoppndvlem17.c φC11
knoppndvlem17.j φJ0
knoppndvlem17.m φM
knoppndvlem17.n φN
knoppndvlem17.1 φ1<NC
Assertion knoppndvlem17 φ2 NCJ112 NC1WBWABA

Proof

Step Hyp Ref Expression
1 knoppndvlem17.t T=xx+12x
2 knoppndvlem17.f F=yn0CnT2 Nny
3 knoppndvlem17.w W=wi0Fwi
4 knoppndvlem17.a A=2 NJ2 M
5 knoppndvlem17.b B=2 NJ2M+1
6 knoppndvlem17.c φC11
7 knoppndvlem17.j φJ0
8 knoppndvlem17.m φM
9 knoppndvlem17.n φN
10 knoppndvlem17.1 φ1<NC
11 6 knoppndvlem3 φCC<1
12 11 simpld φC
13 12 recnd φC
14 13 abscld φC
15 14 7 reexpcld φCJ
16 2re 2
17 16 a1i φ2
18 2ne0 20
19 18 a1i φ20
20 15 17 19 redivcld φCJ2
21 20 recnd φCJ2
22 1red φ1
23 9 nnred φN
24 17 23 remulcld φ2 N
25 24 14 remulcld φ2 NC
26 25 22 resubcld φ2 NC1
27 0red φ0
28 0lt1 0<1
29 28 a1i φ0<1
30 6 9 10 knoppndvlem12 φ2 NC11<2 NC1
31 30 simprd φ1<2 NC1
32 27 22 26 29 31 lttrd φ0<2 NC1
33 26 32 jca φ2 NC10<2 NC1
34 gt0ne0 2 NC10<2 NC12 NC10
35 33 34 syl φ2 NC10
36 22 26 35 redivcld φ12 NC1
37 22 36 resubcld φ112 NC1
38 37 recnd φ112 NC1
39 21 38 mulcomd φCJ2112 NC1=112 NC1CJ2
40 39 oveq1d φCJ2112 NC12 NJ2=112 NC1CJ22 NJ2
41 2rp 2+
42 41 a1i φ2+
43 9 nnrpd φN+
44 42 43 rpmulcld φ2 N+
45 7 nn0zd φJ
46 45 znegcld φJ
47 44 46 rpexpcld φ2 NJ+
48 47 rphalfcld φ2 NJ2+
49 48 rpcnd φ2 NJ2
50 48 rpne0d φ2 NJ20
51 38 21 49 50 divassd φ112 NC1CJ22 NJ2=112 NC1CJ22 NJ2
52 21 49 50 divcld φCJ22 NJ2
53 38 52 mulcomd φ112 NC1CJ22 NJ2=CJ22 NJ2112 NC1
54 15 recnd φCJ
55 47 rpcnd φ2 NJ
56 17 recnd φ2
57 47 rpne0d φ2 NJ0
58 54 55 56 57 19 divcan7d φCJ22 NJ2=CJ2 NJ
59 24 recnd φ2 N
60 44 rpne0d φ2 N0
61 59 60 45 expnegd φ2 NJ=12 NJ
62 61 oveq2d φCJ2 NJ=CJ12 NJ
63 1cnd φ1
64 59 7 expcld φ2 NJ
65 27 29 gtned φ10
66 59 60 45 expne0d φ2 NJ0
67 54 63 64 65 66 divdiv2d φCJ12 NJ=CJ2 NJ1
68 54 64 mulcld φCJ2 NJ
69 68 div1d φCJ2 NJ1=CJ2 NJ
70 54 64 mulcomd φCJ2 NJ=2 NJCJ
71 59 60 jca φ2 N2 N0
72 14 recnd φC
73 6 9 10 knoppndvlem13 φC0
74 13 73 absne0d φC0
75 72 74 jca φCC0
76 71 75 45 3jca φ2 N2 N0CC0J
77 mulexpz 2 N2 N0CC0J2 NCJ=2 NJCJ
78 76 77 syl φ2 NCJ=2 NJCJ
79 78 eqcomd φ2 NJCJ=2 NCJ
80 69 70 79 3eqtrd φCJ2 NJ1=2 NCJ
81 62 67 80 3eqtrd φCJ2 NJ=2 NCJ
82 58 81 eqtrd φCJ22 NJ2=2 NCJ
83 82 oveq1d φCJ22 NJ2112 NC1=2 NCJ112 NC1
84 53 83 eqtrd φ112 NC1CJ22 NJ2=2 NCJ112 NC1
85 40 51 84 3eqtrd φCJ2112 NC12 NJ2=2 NCJ112 NC1
86 85 eqcomd φ2 NCJ112 NC1=CJ2112 NC12 NJ2
87 20 37 remulcld φCJ2112 NC1
88 5 a1i φB=2 NJ2M+1
89 8 peano2zd φM+1
90 9 45 89 knoppndvlem1 φ2 NJ2M+1
91 88 90 eqeltrd φB
92 11 simprd φC<1
93 1 2 3 91 9 12 92 knoppcld φWB
94 4 a1i φA=2 NJ2 M
95 9 45 8 knoppndvlem1 φ2 NJ2 M
96 94 95 eqeltrd φA
97 1 2 3 96 9 12 92 knoppcld φWA
98 93 97 subcld φWBWA
99 98 abscld φWBWA
100 1 2 3 4 5 6 7 8 9 10 knoppndvlem15 φCJ2112 NC1WBWA
101 87 99 48 100 lediv1dd φCJ2112 NC12 NJ2WBWA2 NJ2
102 86 101 eqbrtrd φ2 NCJ112 NC1WBWA2 NJ2
103 4 5 7 8 9 knoppndvlem16 φBA=2 NJ2
104 103 eqcomd φ2 NJ2=BA
105 104 oveq2d φWBWA2 NJ2=WBWABA
106 102 105 breqtrd φ2 NCJ112 NC1WBWABA