Metamath Proof Explorer


Theorem knoppndvlem12

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 29-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem12.c φ C 1 1
knoppndvlem12.n φ N
knoppndvlem12.1 φ 1 < N C
Assertion knoppndvlem12 φ 2 N C 1 1 < 2 N C 1

Proof

Step Hyp Ref Expression
1 knoppndvlem12.c φ C 1 1
2 knoppndvlem12.n φ N
3 knoppndvlem12.1 φ 1 < N C
4 1red φ 1
5 2re 2
6 5 a1i φ 2
7 nnre N N
8 2 7 syl φ N
9 6 8 remulcld φ 2 N
10 1 knoppndvlem3 φ C C < 1
11 10 simpld φ C
12 11 recnd φ C
13 12 abscld φ C
14 9 13 remulcld φ 2 N C
15 1lt2 1 < 2
16 15 a1i φ 1 < 2
17 2t1e2 2 1 = 2
18 17 eqcomi 2 = 2 1
19 18 a1i φ 2 = 2 1
20 8 13 remulcld φ N C
21 2rp 2 +
22 21 a1i φ 2 +
23 4 20 22 3 ltmul2dd φ 2 1 < 2 N C
24 19 23 eqbrtrd φ 2 < 2 N C
25 6 recnd φ 2
26 8 recnd φ N
27 13 recnd φ C
28 25 26 27 mulassd φ 2 N C = 2 N C
29 28 eqcomd φ 2 N C = 2 N C
30 24 29 breqtrd φ 2 < 2 N C
31 4 6 14 16 30 lttrd φ 1 < 2 N C
32 4 31 jca φ 1 1 < 2 N C
33 ltne 1 1 < 2 N C 2 N C 1
34 32 33 syl φ 2 N C 1
35 1p1e2 1 + 1 = 2
36 35 a1i φ 1 + 1 = 2
37 36 30 eqbrtrd φ 1 + 1 < 2 N C
38 4 4 14 ltaddsubd φ 1 + 1 < 2 N C 1 < 2 N C 1
39 37 38 mpbid φ 1 < 2 N C 1
40 34 39 jca φ 2 N C 1 1 < 2 N C 1