Metamath Proof Explorer


Theorem knoppndvlem13

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 1-Jul-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem13.c φ C 1 1
knoppndvlem13.n φ N
knoppndvlem13.1 φ 1 < N C
Assertion knoppndvlem13 φ C 0

Proof

Step Hyp Ref Expression
1 knoppndvlem13.c φ C 1 1
2 knoppndvlem13.n φ N
3 knoppndvlem13.1 φ 1 < N C
4 3 adantr φ C = 0 1 < N C
5 0lt1 0 < 1
6 0re 0
7 1re 1
8 6 7 ltnsymi 0 < 1 ¬ 1 < 0
9 5 8 ax-mp ¬ 1 < 0
10 9 a1i φ C = 0 ¬ 1 < 0
11 id C = 0 C = 0
12 11 abs00bd C = 0 C = 0
13 12 oveq2d C = 0 N C = N 0
14 13 adantl φ C = 0 N C = N 0
15 nncn N N
16 2 15 syl φ N
17 16 adantr φ C = 0 N
18 17 mul01d φ C = 0 N 0 = 0
19 14 18 eqtrd φ C = 0 N C = 0
20 19 eqcomd φ C = 0 0 = N C
21 20 breq2d φ C = 0 1 < 0 1 < N C
22 10 21 mtbid φ C = 0 ¬ 1 < N C
23 4 22 pm2.65da φ ¬ C = 0
24 23 neqned φ C 0