Metamath Proof Explorer


Theorem knoppndvlem14

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 1-Jul-2021) (Revised by Asger C. Ipsen, 7-Jul-2021)

Ref Expression
Hypotheses knoppndvlem14.t T=xx+12x
knoppndvlem14.f F=yn0CnT2 Nny
knoppndvlem14.a A=2 NJ2 M
knoppndvlem14.b B=2 NJ2M+1
knoppndvlem14.c φC11
knoppndvlem14.j φJ0
knoppndvlem14.m φM
knoppndvlem14.n φN
knoppndvlem14.1 φ1<NC
Assertion knoppndvlem14 φi=0J1FBii=0J1FAiCJ212 NC1

Proof

Step Hyp Ref Expression
1 knoppndvlem14.t T=xx+12x
2 knoppndvlem14.f F=yn0CnT2 Nny
3 knoppndvlem14.a A=2 NJ2 M
4 knoppndvlem14.b B=2 NJ2M+1
5 knoppndvlem14.c φC11
6 knoppndvlem14.j φJ0
7 knoppndvlem14.m φM
8 knoppndvlem14.n φN
9 knoppndvlem14.1 φ1<NC
10 4 a1i φB=2 NJ2M+1
11 6 nn0zd φJ
12 7 peano2zd φM+1
13 8 11 12 knoppndvlem1 φ2 NJ2M+1
14 10 13 eqeltrd φB
15 5 knoppndvlem3 φCC<1
16 15 simpld φC
17 1 2 14 16 8 knoppndvlem5 φi=0J1FBi
18 3 a1i φA=2 NJ2 M
19 8 11 7 knoppndvlem1 φ2 NJ2 M
20 18 19 eqeltrd φA
21 1 2 20 16 8 knoppndvlem5 φi=0J1FAi
22 17 21 resubcld φi=0J1FBii=0J1FAi
23 22 recnd φi=0J1FBii=0J1FAi
24 23 abscld φi=0J1FBii=0J1FAi
25 14 20 resubcld φBA
26 25 recnd φBA
27 26 abscld φBA
28 fzfid φ0J1Fin
29 2re 2
30 29 a1i φ2
31 nnre NN
32 8 31 syl φN
33 30 32 remulcld φ2 N
34 16 recnd φC
35 34 abscld φC
36 33 35 remulcld φ2 NC
37 36 adantr φi0J12 NC
38 elfznn0 i0J1i0
39 38 adantl φi0J1i0
40 37 39 reexpcld φi0J12 NCi
41 28 40 fsumrecl φi=0J12 NCi
42 27 41 remulcld φBAi=0J12 NCi
43 35 6 reexpcld φCJ
44 2ne0 20
45 44 a1i φ20
46 43 30 45 redivcld φCJ2
47 1red φ1
48 36 47 resubcld φ2 NC1
49 0red φ0
50 0lt1 0<1
51 50 a1i φ0<1
52 5 8 9 knoppndvlem12 φ2 NC11<2 NC1
53 52 simprd φ1<2 NC1
54 49 47 48 51 53 lttrd φ0<2 NC1
55 49 54 jca φ00<2 NC1
56 ltne 00<2 NC12 NC10
57 55 56 syl φ2 NC10
58 47 48 57 redivcld φ12 NC1
59 46 58 remulcld φCJ212 NC1
60 1 2 20 14 5 6 8 knoppndvlem11 φi=0J1FBii=0J1FAiBAi=0J12 NCi
61 10 18 oveq12d φBA=2 NJ2M+12 NJ2 M
62 30 recnd φ2
63 32 recnd φN
64 nnge1 N1N
65 8 64 syl φ1N
66 49 47 32 51 65 ltletrd φ0<N
67 49 66 jca φ00<N
68 ltne 00<NN0
69 67 68 syl φN0
70 62 63 45 69 mulne0d φ2 N0
71 11 znegcld φJ
72 33 70 71 reexpclzd φ2 NJ
73 72 30 45 redivcld φ2 NJ2
74 73 recnd φ2 NJ2
75 12 zcnd φM+1
76 7 zcnd φM
77 74 75 76 subdid φ2 NJ2M+1-M=2 NJ2M+12 NJ2 M
78 77 eqcomd φ2 NJ2M+12 NJ2 M=2 NJ2M+1-M
79 1cnd φ1
80 76 79 pncan2d φM+1-M=1
81 80 oveq2d φ2 NJ2M+1-M=2 NJ21
82 74 mulridd φ2 NJ21=2 NJ2
83 78 81 82 3eqtrd φ2 NJ2M+12 NJ2 M=2 NJ2
84 61 83 eqtrd φBA=2 NJ2
85 84 fveq2d φBA=2 NJ2
86 72 recnd φ2 NJ
87 86 62 45 absdivd φ2 NJ2=2 NJ2
88 62 63 mulcld φ2 N
89 88 70 71 3jca φ2 N2 N0J
90 absexpz 2 N2 N0J2 NJ=2 NJ
91 89 90 syl φ2 NJ=2 NJ
92 62 63 absmuld φ2 N=2N
93 0le2 02
94 29 93 pm3.2i 202
95 absid 2022=2
96 94 95 ax-mp 2=2
97 96 a1i φ2=2
98 49 32 66 ltled φ0N
99 32 98 absidd φN=N
100 97 99 oveq12d φ2N=2 N
101 92 100 eqtrd φ2 N=2 N
102 101 oveq1d φ2 NJ=2 NJ
103 91 102 eqtrd φ2 NJ=2 NJ
104 103 97 oveq12d φ2 NJ2=2 NJ2
105 87 104 eqtrd φ2 NJ2=2 NJ2
106 85 105 eqtrd φBA=2 NJ2
107 36 recnd φ2 NC
108 52 simpld φ2 NC1
109 107 108 6 geoser φi=0J12 NCi=12 NCJ12 NC
110 107 6 expcld φ2 NCJ
111 108 necomd φ12 NC
112 79 110 79 107 111 div2subd φ12 NCJ12 NC=2 NCJ12 NC1
113 109 112 eqtrd φi=0J12 NCi=2 NCJ12 NC1
114 106 113 oveq12d φBAi=0J12 NCi=2 NJ22 NCJ12 NC1
115 113 41 eqeltrrd φ2 NCJ12 NC1
116 36 6 reexpcld φ2 NCJ
117 116 48 57 redivcld φ2 NCJ2 NC1
118 2rp 2+
119 118 a1i φ2+
120 119 rpgt0d φ0<2
121 30 32 120 66 mulgt0d φ0<2 N
122 33 71 121 3jca φ2 NJ0<2 N
123 expgt0 2 NJ0<2 N0<2 NJ
124 122 123 syl φ0<2 NJ
125 49 72 124 ltled φ02 NJ
126 72 119 125 divge0d φ02 NJ2
127 116 47 resubcld φ2 NCJ1
128 48 54 elrpd φ2 NC1+
129 116 lem1d φ2 NCJ12 NCJ
130 127 116 128 129 lediv1dd φ2 NCJ12 NC12 NCJ2 NC1
131 115 117 73 126 130 lemul2ad φ2 NJ22 NCJ12 NC12 NJ22 NCJ2 NC1
132 48 recnd φ2 NC1
133 110 132 57 divrecd φ2 NCJ2 NC1=2 NCJ12 NC1
134 133 oveq2d φ2 NJ22 NCJ2 NC1=2 NJ22 NCJ12 NC1
135 58 recnd φ12 NC1
136 74 110 135 mulassd φ2 NJ22 NCJ12 NC1=2 NJ22 NCJ12 NC1
137 136 eqcomd φ2 NJ22 NCJ12 NC1=2 NJ22 NCJ12 NC1
138 86 110 62 45 div23d φ2 NJ2 NCJ2=2 NJ22 NCJ
139 138 eqcomd φ2 NJ22 NCJ=2 NJ2 NCJ2
140 88 70 jca φ2 N2 N0
141 35 recnd φC
142 5 8 9 knoppndvlem13 φC0
143 34 142 absne0d φC0
144 141 143 jca φCC0
145 140 144 11 3jca φ2 N2 N0CC0J
146 mulexpz 2 N2 N0CC0J2 NCJ=2 NJCJ
147 145 146 syl φ2 NCJ=2 NJCJ
148 147 oveq2d φ2 NJ2 NCJ=2 NJ2 NJCJ
149 88 6 expcld φ2 NJ
150 43 recnd φCJ
151 86 149 150 mulassd φ2 NJ2 NJCJ=2 NJ2 NJCJ
152 151 eqcomd φ2 NJ2 NJCJ=2 NJ2 NJCJ
153 140 71 11 jca32 φ2 N2 N0JJ
154 expaddz 2 N2 N0JJ2 N-J+J=2 NJ2 NJ
155 153 154 syl φ2 N-J+J=2 NJ2 NJ
156 155 eqcomd φ2 NJ2 NJ=2 N-J+J
157 71 zcnd φJ
158 6 nn0cnd φJ
159 157 158 addcomd φ-J+J=J+- J
160 158 negidd φJ+- J=0
161 159 160 eqtrd φ-J+J=0
162 161 oveq2d φ2 N-J+J=2 N0
163 88 exp0d φ2 N0=1
164 156 162 163 3eqtrd φ2 NJ2 NJ=1
165 164 oveq1d φ2 NJ2 NJCJ=1CJ
166 150 mullidd φ1CJ=CJ
167 165 166 eqtrd φ2 NJ2 NJCJ=CJ
168 148 152 167 3eqtrd φ2 NJ2 NCJ=CJ
169 168 oveq1d φ2 NJ2 NCJ2=CJ2
170 139 169 eqtrd φ2 NJ22 NCJ=CJ2
171 170 oveq1d φ2 NJ22 NCJ12 NC1=CJ212 NC1
172 134 137 171 3eqtrd φ2 NJ22 NCJ2 NC1=CJ212 NC1
173 131 172 breqtrd φ2 NJ22 NCJ12 NC1CJ212 NC1
174 114 173 eqbrtrd φBAi=0J12 NCiCJ212 NC1
175 24 42 59 60 174 letrd φi=0J1FBii=0J1FAiCJ212 NC1