Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem14.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppndvlem14.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppndvlem14.a |
⊢ 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) |
4 |
|
knoppndvlem14.b |
⊢ 𝐵 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) |
5 |
|
knoppndvlem14.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
6 |
|
knoppndvlem14.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
7 |
|
knoppndvlem14.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
knoppndvlem14.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
knoppndvlem14.1 |
⊢ ( 𝜑 → 1 < ( 𝑁 · ( abs ‘ 𝐶 ) ) ) |
10 |
4
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) ) |
11 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
12 |
7
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
13 |
8 11 12
|
knoppndvlem1 |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) ∈ ℝ ) |
14 |
10 13
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
15 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
17 |
1 2 14 16 8
|
knoppndvlem5 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
18 |
3
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) |
19 |
8 11 7
|
knoppndvlem1 |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ∈ ℝ ) |
20 |
18 19
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
21 |
1 2 20 16 8
|
knoppndvlem5 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
22 |
17 21
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ∈ ℂ ) |
24 |
23
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
25 |
14 20
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
27 |
26
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
28 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝐽 − 1 ) ) ∈ Fin ) |
29 |
|
2re |
⊢ 2 ∈ ℝ |
30 |
29
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
31 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
32 |
8 31
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
33 |
30 32
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
34 |
16
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
35 |
34
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
36 |
33 35
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
38 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℕ0 ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
40 |
37 39
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ∈ ℝ ) |
41 |
28 40
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ∈ ℝ ) |
42 |
27 41
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ∈ ℝ ) |
43 |
35 6
|
reexpcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ∈ ℝ ) |
44 |
|
2ne0 |
⊢ 2 ≠ 0 |
45 |
44
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
46 |
43 30 45
|
redivcld |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ∈ ℝ ) |
47 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
48 |
36 47
|
resubcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ∈ ℝ ) |
49 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
50 |
|
0lt1 |
⊢ 0 < 1 |
51 |
50
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
52 |
5 8 9
|
knoppndvlem12 |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ≠ 1 ∧ 1 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
53 |
52
|
simprd |
⊢ ( 𝜑 → 1 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) |
54 |
49 47 48 51 53
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) |
55 |
49 54
|
jca |
⊢ ( 𝜑 → ( 0 ∈ ℝ ∧ 0 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
56 |
|
ltne |
⊢ ( ( 0 ∈ ℝ ∧ 0 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ≠ 0 ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ≠ 0 ) |
58 |
47 48 57
|
redivcld |
⊢ ( 𝜑 → ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ∈ ℝ ) |
59 |
46 58
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ∈ ℝ ) |
60 |
1 2 20 14 5 6 8
|
knoppndvlem11 |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
61 |
10 18
|
oveq12d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) − ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) ) |
62 |
30
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
63 |
32
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
64 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
65 |
8 64
|
syl |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
66 |
49 47 32 51 65
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
67 |
49 66
|
jca |
⊢ ( 𝜑 → ( 0 ∈ ℝ ∧ 0 < 𝑁 ) ) |
68 |
|
ltne |
⊢ ( ( 0 ∈ ℝ ∧ 0 < 𝑁 ) → 𝑁 ≠ 0 ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
70 |
62 63 45 69
|
mulne0d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ≠ 0 ) |
71 |
11
|
znegcld |
⊢ ( 𝜑 → - 𝐽 ∈ ℤ ) |
72 |
33 70 71
|
reexpclzd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ∈ ℝ ) |
73 |
72 30 45
|
redivcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ∈ ℝ ) |
74 |
73
|
recnd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ∈ ℂ ) |
75 |
12
|
zcnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℂ ) |
76 |
7
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
77 |
74 75 76
|
subdid |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( 𝑀 + 1 ) − 𝑀 ) ) = ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) − ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) ) |
78 |
77
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) − ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( 𝑀 + 1 ) − 𝑀 ) ) ) |
79 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
80 |
76 79
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 ) |
81 |
80
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( 𝑀 + 1 ) − 𝑀 ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 1 ) ) |
82 |
74
|
mulid1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 1 ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
83 |
78 81 82
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( 𝑀 + 1 ) ) − ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
84 |
61 83
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) ) |
86 |
72
|
recnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ∈ ℂ ) |
87 |
86 62 45
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) = ( ( abs ‘ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) / ( abs ‘ 2 ) ) ) |
88 |
62 63
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
89 |
88 70 71
|
3jca |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ∧ - 𝐽 ∈ ℤ ) ) |
90 |
|
absexpz |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ∧ - 𝐽 ∈ ℤ ) → ( abs ‘ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) = ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ - 𝐽 ) ) |
91 |
89 90
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) = ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ - 𝐽 ) ) |
92 |
62 63
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( 2 · 𝑁 ) ) = ( ( abs ‘ 2 ) · ( abs ‘ 𝑁 ) ) ) |
93 |
|
0le2 |
⊢ 0 ≤ 2 |
94 |
29 93
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
95 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
96 |
94 95
|
ax-mp |
⊢ ( abs ‘ 2 ) = 2 |
97 |
96
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 2 ) = 2 ) |
98 |
49 32 66
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
99 |
32 98
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) = 𝑁 ) |
100 |
97 99
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ 2 ) · ( abs ‘ 𝑁 ) ) = ( 2 · 𝑁 ) ) |
101 |
92 100
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 2 · 𝑁 ) ) = ( 2 · 𝑁 ) ) |
102 |
101
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ - 𝐽 ) = ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) |
103 |
91 102
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) = ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) |
104 |
103 97
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) / ( abs ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
105 |
87 104
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
106 |
85 105
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
107 |
36
|
recnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℂ ) |
108 |
52
|
simpld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ≠ 1 ) |
109 |
107 108 6
|
geoser |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) = ( ( 1 − ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) / ( 1 − ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) ) ) |
110 |
107 6
|
expcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ∈ ℂ ) |
111 |
108
|
necomd |
⊢ ( 𝜑 → 1 ≠ ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) |
112 |
79 110 79 107 111
|
div2subd |
⊢ ( 𝜑 → ( ( 1 − ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) / ( 1 − ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
113 |
109 112
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) = ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
114 |
106 113
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
115 |
113 41
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ∈ ℝ ) |
116 |
36 6
|
reexpcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ∈ ℝ ) |
117 |
116 48 57
|
redivcld |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ∈ ℝ ) |
118 |
|
2rp |
⊢ 2 ∈ ℝ+ |
119 |
118
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
120 |
119
|
rpgt0d |
⊢ ( 𝜑 → 0 < 2 ) |
121 |
30 32 120 66
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( 2 · 𝑁 ) ) |
122 |
33 71 121
|
3jca |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ∈ ℝ ∧ - 𝐽 ∈ ℤ ∧ 0 < ( 2 · 𝑁 ) ) ) |
123 |
|
expgt0 |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ - 𝐽 ∈ ℤ ∧ 0 < ( 2 · 𝑁 ) ) → 0 < ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) |
124 |
122 123
|
syl |
⊢ ( 𝜑 → 0 < ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) |
125 |
49 72 124
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ) |
126 |
72 119 125
|
divge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ) |
127 |
116 47
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) ∈ ℝ ) |
128 |
48 54
|
elrpd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ∈ ℝ+ ) |
129 |
116
|
lem1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) ≤ ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) |
130 |
127 116 128 129
|
lediv1dd |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ≤ ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
131 |
115 117 73 126 130
|
lemul2ad |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ≤ ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
132 |
48
|
recnd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ∈ ℂ ) |
133 |
110 132 57
|
divrecd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) = ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) ) |
135 |
58
|
recnd |
⊢ ( 𝜑 → ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ∈ ℂ ) |
136 |
74 110 135
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) ) |
137 |
136
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
138 |
86 110 62 45
|
div23d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) / 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) ) |
139 |
138
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) / 2 ) ) |
140 |
88 70
|
jca |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ) ) |
141 |
35
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℂ ) |
142 |
5 8 9
|
knoppndvlem13 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
143 |
34 142
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ≠ 0 ) |
144 |
141 143
|
jca |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) ∈ ℂ ∧ ( abs ‘ 𝐶 ) ≠ 0 ) ) |
145 |
140 144 11
|
3jca |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ) ∧ ( ( abs ‘ 𝐶 ) ∈ ℂ ∧ ( abs ‘ 𝐶 ) ≠ 0 ) ∧ 𝐽 ∈ ℤ ) ) |
146 |
|
mulexpz |
⊢ ( ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ) ∧ ( ( abs ‘ 𝐶 ) ∈ ℂ ∧ ( abs ‘ 𝐶 ) ≠ 0 ) ∧ 𝐽 ∈ ℤ ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) = ( ( ( 2 · 𝑁 ) ↑ 𝐽 ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) |
147 |
145 146
|
syl |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) = ( ( ( 2 · 𝑁 ) ↑ 𝐽 ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) |
148 |
147
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) ↑ 𝐽 ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) ) |
149 |
88 6
|
expcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝐽 ) ∈ ℂ ) |
150 |
43
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ∈ ℂ ) |
151 |
86 149 150
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) ↑ 𝐽 ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) ) |
152 |
151
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) ↑ 𝐽 ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) = ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) |
153 |
140 71 11
|
jca32 |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ) ∧ ( - 𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ) ) |
154 |
|
expaddz |
⊢ ( ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ≠ 0 ) ∧ ( - 𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ) → ( ( 2 · 𝑁 ) ↑ ( - 𝐽 + 𝐽 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) ) |
155 |
153 154
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ ( - 𝐽 + 𝐽 ) ) = ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) ) |
156 |
155
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) = ( ( 2 · 𝑁 ) ↑ ( - 𝐽 + 𝐽 ) ) ) |
157 |
71
|
zcnd |
⊢ ( 𝜑 → - 𝐽 ∈ ℂ ) |
158 |
6
|
nn0cnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
159 |
157 158
|
addcomd |
⊢ ( 𝜑 → ( - 𝐽 + 𝐽 ) = ( 𝐽 + - 𝐽 ) ) |
160 |
158
|
negidd |
⊢ ( 𝜑 → ( 𝐽 + - 𝐽 ) = 0 ) |
161 |
159 160
|
eqtrd |
⊢ ( 𝜑 → ( - 𝐽 + 𝐽 ) = 0 ) |
162 |
161
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ ( - 𝐽 + 𝐽 ) ) = ( ( 2 · 𝑁 ) ↑ 0 ) ) |
163 |
88
|
exp0d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 0 ) = 1 ) |
164 |
156 162 163
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) = 1 ) |
165 |
164
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) = ( 1 · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) ) |
166 |
150
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) = ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) |
167 |
165 166
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( 2 · 𝑁 ) ↑ 𝐽 ) ) · ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) = ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) |
168 |
148 152 167
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) = ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) ) |
169 |
168
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) / 2 ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ) |
170 |
139 169
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) ) |
171 |
170
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
172 |
134 137 171
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
173 |
131 172
|
breqtrd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · ( ( ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝐽 ) − 1 ) / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ≤ ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
174 |
114 173
|
eqbrtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ≤ ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |
175 |
24 42 59 60 174
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( ( ( abs ‘ 𝐶 ) ↑ 𝐽 ) / 2 ) · ( 1 / ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) ) |