| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem11.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppndvlem11.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppndvlem11.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
knoppndvlem11.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
knoppndvlem11.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
| 6 |
|
knoppndvlem11.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
| 7 |
|
knoppndvlem11.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 8 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝐽 − 1 ) ) ∈ Fin ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝑁 ∈ ℕ ) |
| 10 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐶 ∈ ℝ ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐵 ∈ ℝ ) |
| 14 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℕ0 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 16 |
1 2 9 12 13 15
|
knoppcnlem3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
| 18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐴 ∈ ℝ ) |
| 19 |
1 2 9 12 18 15
|
knoppcnlem3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 21 |
8 17 20
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) = ( abs ‘ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ) |
| 24 |
17 20
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ∈ ℂ ) |
| 25 |
8 24
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ∈ ℂ ) |
| 26 |
25
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 27 |
24
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 28 |
8 27
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 29 |
4 3
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 31 |
30
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 32 |
|
2re |
⊢ 2 ∈ ℝ |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 34 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 35 |
7 34
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 36 |
33 35
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 37 |
11
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 38 |
37
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 39 |
36 38
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
| 41 |
40 15
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 42 |
8 41
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 43 |
31 42
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ∈ ℝ ) |
| 44 |
8 24
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ) |
| 45 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 46 |
45 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ∈ ℝ ) |
| 47 |
2 13 15
|
knoppcnlem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) = ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ) ) |
| 48 |
2 18 15
|
knoppcnlem1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) = ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) |
| 49 |
47 48
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ) − ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) |
| 50 |
12 15
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝐶 ↑ 𝑖 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝐶 ↑ 𝑖 ) ∈ ℂ ) |
| 52 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 53 |
52 15
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 2 · 𝑁 ) ↑ 𝑖 ) ∈ ℝ ) |
| 54 |
53 13
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ∈ ℝ ) |
| 55 |
1 54
|
dnicld2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ∈ ℝ ) |
| 56 |
55
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ∈ ℂ ) |
| 57 |
53 18
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ∈ ℝ ) |
| 58 |
1 57
|
dnicld2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ∈ ℝ ) |
| 59 |
58
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ∈ ℂ ) |
| 60 |
51 56 59
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) = ( ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ) − ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) ) − ( ( 𝐶 ↑ 𝑖 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) = ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) |
| 62 |
49 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) |
| 63 |
62
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ) |
| 64 |
56 59
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ∈ ℂ ) |
| 65 |
51 64
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) = ( ( abs ‘ ( 𝐶 ↑ 𝑖 ) ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ) |
| 66 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐶 ∈ ℂ ) |
| 67 |
66 15
|
absexpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( 𝐶 ↑ 𝑖 ) ) = ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ) |
| 68 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ ( 𝐶 ↑ 𝑖 ) ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ) |
| 69 |
65 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 𝐶 ↑ 𝑖 ) · ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ) |
| 70 |
63 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ) |
| 71 |
64
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ∈ ℝ ) |
| 72 |
54 57
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ∈ ℝ ) |
| 73 |
72
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ∈ ℂ ) |
| 74 |
73
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ∈ ℝ ) |
| 75 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 76 |
75 15
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ∈ ℝ ) |
| 77 |
66
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 0 ≤ ( abs ‘ 𝐶 ) ) |
| 78 |
75 15 77
|
expge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 0 ≤ ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ) |
| 79 |
1 57 54
|
dnibnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ≤ ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) |
| 80 |
71 74 76 78 79
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ≤ ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) |
| 81 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( 2 · 𝑁 ) ↑ 𝑖 ) ∈ ℂ ) |
| 82 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 83 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 84 |
81 82 83
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( 𝐵 − 𝐴 ) ) = ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) |
| 85 |
84
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( 𝐵 − 𝐴 ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) = ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( 𝐵 − 𝐴 ) ) ) ) |
| 87 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 88 |
81 87
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 89 |
52
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 90 |
89 15
|
absexpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) = ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ 𝑖 ) ) |
| 91 |
33
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 92 |
35
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 93 |
91 92
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( 2 · 𝑁 ) ) = ( ( abs ‘ 2 ) · ( abs ‘ 𝑁 ) ) ) |
| 94 |
|
0le2 |
⊢ 0 ≤ 2 |
| 95 |
32
|
absidi |
⊢ ( 0 ≤ 2 → ( abs ‘ 2 ) = 2 ) |
| 96 |
94 95
|
ax-mp |
⊢ ( abs ‘ 2 ) = 2 |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 2 ) = 2 ) |
| 98 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 99 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 100 |
|
0le1 |
⊢ 0 ≤ 1 |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 102 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
| 103 |
7 102
|
syl |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 104 |
98 99 35 101 103
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 105 |
35 104
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 106 |
97 105
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ 2 ) · ( abs ‘ 𝑁 ) ) = ( 2 · 𝑁 ) ) |
| 107 |
93 106
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 2 · 𝑁 ) ) = ( 2 · 𝑁 ) ) |
| 108 |
107
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ 𝑖 ) = ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ ( 2 · 𝑁 ) ) ↑ 𝑖 ) = ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) |
| 110 |
90 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) = ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) |
| 111 |
110
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 112 |
88 111
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( 𝐵 − 𝐴 ) ) ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 113 |
86 112
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 114 |
113
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) ) |
| 115 |
76
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ∈ ℂ ) |
| 116 |
45
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 117 |
115 81 116
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) ) |
| 118 |
117
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) = ( ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) |
| 119 |
115 81
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) ∈ ℂ ) |
| 120 |
119 116
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) ) ) |
| 121 |
115 81
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ) ) |
| 122 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ 𝐶 ) ∈ ℂ ) |
| 123 |
89 122 15
|
mulexpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) = ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ) ) |
| 124 |
123
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) ) = ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) |
| 125 |
121 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) = ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( 2 · 𝑁 ) ↑ 𝑖 ) ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 127 |
118 120 126
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · ( abs ‘ ( 𝐵 − 𝐴 ) ) ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 128 |
114 127
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) − ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 129 |
80 128
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( abs ‘ 𝐶 ) ↑ 𝑖 ) · ( abs ‘ ( ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐵 ) ) − ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑖 ) · 𝐴 ) ) ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 130 |
70 129
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 131 |
8 27 46 130
|
fsumle |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 132 |
31
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 133 |
125 119
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ) → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ∈ ℂ ) |
| 134 |
8 132 133
|
fsummulc2 |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) = Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 135 |
134
|
eqcomd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) = ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 136 |
131 135
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( abs ‘ ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 137 |
26 28 43 44 136
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |
| 138 |
23 137
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑖 ) − Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ) ) ≤ ( ( abs ‘ ( 𝐵 − 𝐴 ) ) · Σ 𝑖 ∈ ( 0 ... ( 𝐽 − 1 ) ) ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↑ 𝑖 ) ) ) |