| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppndvlem11.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppndvlem11.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppndvlem11.a |
|- ( ph -> A e. RR ) |
| 4 |
|
knoppndvlem11.b |
|- ( ph -> B e. RR ) |
| 5 |
|
knoppndvlem11.c |
|- ( ph -> C e. ( -u 1 (,) 1 ) ) |
| 6 |
|
knoppndvlem11.j |
|- ( ph -> J e. NN0 ) |
| 7 |
|
knoppndvlem11.n |
|- ( ph -> N e. NN ) |
| 8 |
|
fzfid |
|- ( ph -> ( 0 ... ( J - 1 ) ) e. Fin ) |
| 9 |
7
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> N e. NN ) |
| 10 |
5
|
knoppndvlem3 |
|- ( ph -> ( C e. RR /\ ( abs ` C ) < 1 ) ) |
| 11 |
10
|
simpld |
|- ( ph -> C e. RR ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> C e. RR ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> B e. RR ) |
| 14 |
|
elfznn0 |
|- ( i e. ( 0 ... ( J - 1 ) ) -> i e. NN0 ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> i e. NN0 ) |
| 16 |
1 2 9 12 13 15
|
knoppcnlem3 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` B ) ` i ) e. RR ) |
| 17 |
16
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` B ) ` i ) e. CC ) |
| 18 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> A e. RR ) |
| 19 |
1 2 9 12 18 15
|
knoppcnlem3 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` A ) ` i ) e. RR ) |
| 20 |
19
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` A ) ` i ) e. CC ) |
| 21 |
8 17 20
|
fsumsub |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) = ( sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` B ) ` i ) - sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` A ) ` i ) ) ) |
| 22 |
21
|
eqcomd |
|- ( ph -> ( sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` B ) ` i ) - sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` A ) ` i ) ) = sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( abs ` ( sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` B ) ` i ) - sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` A ) ` i ) ) ) = ( abs ` sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) ) |
| 24 |
17 20
|
subcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) e. CC ) |
| 25 |
8 24
|
fsumcl |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) e. CC ) |
| 26 |
25
|
abscld |
|- ( ph -> ( abs ` sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) e. RR ) |
| 27 |
24
|
abscld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) e. RR ) |
| 28 |
8 27
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) e. RR ) |
| 29 |
4 3
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ph -> ( B - A ) e. CC ) |
| 31 |
30
|
abscld |
|- ( ph -> ( abs ` ( B - A ) ) e. RR ) |
| 32 |
|
2re |
|- 2 e. RR |
| 33 |
32
|
a1i |
|- ( ph -> 2 e. RR ) |
| 34 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 35 |
7 34
|
syl |
|- ( ph -> N e. RR ) |
| 36 |
33 35
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 37 |
11
|
recnd |
|- ( ph -> C e. CC ) |
| 38 |
37
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 39 |
36 38
|
remulcld |
|- ( ph -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( 2 x. N ) x. ( abs ` C ) ) e. RR ) |
| 41 |
40 15
|
reexpcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) e. RR ) |
| 42 |
8 41
|
fsumrecl |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) e. RR ) |
| 43 |
31 42
|
remulcld |
|- ( ph -> ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) e. RR ) |
| 44 |
8 24
|
fsumabs |
|- ( ph -> ( abs ` sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) <_ sum_ i e. ( 0 ... ( J - 1 ) ) ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) ) |
| 45 |
31
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( B - A ) ) e. RR ) |
| 46 |
45 41
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) e. RR ) |
| 47 |
2 13 15
|
knoppcnlem1 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` B ) ` i ) = ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) ) ) |
| 48 |
2 18 15
|
knoppcnlem1 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( F ` A ) ` i ) = ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) |
| 49 |
47 48
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) = ( ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) ) - ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) |
| 50 |
12 15
|
reexpcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( C ^ i ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( C ^ i ) e. CC ) |
| 52 |
36
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( 2 x. N ) e. RR ) |
| 53 |
52 15
|
reexpcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( 2 x. N ) ^ i ) e. RR ) |
| 54 |
53 13
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) ^ i ) x. B ) e. RR ) |
| 55 |
1 54
|
dnicld2 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) e. RR ) |
| 56 |
55
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) e. CC ) |
| 57 |
53 18
|
remulcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) ^ i ) x. A ) e. RR ) |
| 58 |
1 57
|
dnicld2 |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) e. RR ) |
| 59 |
58
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) e. CC ) |
| 60 |
51 56 59
|
subdid |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) = ( ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) ) - ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) |
| 61 |
60
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) ) - ( ( C ^ i ) x. ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) = ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) |
| 62 |
49 61
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) = ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) |
| 63 |
62
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) = ( abs ` ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) ) |
| 64 |
56 59
|
subcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) e. CC ) |
| 65 |
51 64
|
absmuld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) = ( ( abs ` ( C ^ i ) ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) ) |
| 66 |
37
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> C e. CC ) |
| 67 |
66 15
|
absexpd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( C ^ i ) ) = ( ( abs ` C ) ^ i ) ) |
| 68 |
67
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` ( C ^ i ) ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) = ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) ) |
| 69 |
65 68
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( C ^ i ) x. ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) = ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) ) |
| 70 |
63 69
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) = ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) ) |
| 71 |
64
|
abscld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) e. RR ) |
| 72 |
54 57
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) e. RR ) |
| 73 |
72
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) e. CC ) |
| 74 |
73
|
abscld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) e. RR ) |
| 75 |
38
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` C ) e. RR ) |
| 76 |
75 15
|
reexpcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` C ) ^ i ) e. RR ) |
| 77 |
66
|
absge0d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> 0 <_ ( abs ` C ) ) |
| 78 |
75 15 77
|
expge0d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> 0 <_ ( ( abs ` C ) ^ i ) ) |
| 79 |
1 57 54
|
dnibnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) <_ ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) |
| 80 |
71 74 76 78 79
|
lemul2ad |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) <_ ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) |
| 81 |
53
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( 2 x. N ) ^ i ) e. CC ) |
| 82 |
13
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> B e. CC ) |
| 83 |
18
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> A e. CC ) |
| 84 |
81 82 83
|
subdid |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) ^ i ) x. ( B - A ) ) = ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) |
| 85 |
84
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) = ( ( ( 2 x. N ) ^ i ) x. ( B - A ) ) ) |
| 86 |
85
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) = ( abs ` ( ( ( 2 x. N ) ^ i ) x. ( B - A ) ) ) ) |
| 87 |
30
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( B - A ) e. CC ) |
| 88 |
81 87
|
absmuld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( 2 x. N ) ^ i ) x. ( B - A ) ) ) = ( ( abs ` ( ( 2 x. N ) ^ i ) ) x. ( abs ` ( B - A ) ) ) ) |
| 89 |
52
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( 2 x. N ) e. CC ) |
| 90 |
89 15
|
absexpd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( 2 x. N ) ^ i ) ) = ( ( abs ` ( 2 x. N ) ) ^ i ) ) |
| 91 |
33
|
recnd |
|- ( ph -> 2 e. CC ) |
| 92 |
35
|
recnd |
|- ( ph -> N e. CC ) |
| 93 |
91 92
|
absmuld |
|- ( ph -> ( abs ` ( 2 x. N ) ) = ( ( abs ` 2 ) x. ( abs ` N ) ) ) |
| 94 |
|
0le2 |
|- 0 <_ 2 |
| 95 |
32
|
absidi |
|- ( 0 <_ 2 -> ( abs ` 2 ) = 2 ) |
| 96 |
94 95
|
ax-mp |
|- ( abs ` 2 ) = 2 |
| 97 |
96
|
a1i |
|- ( ph -> ( abs ` 2 ) = 2 ) |
| 98 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 99 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 100 |
|
0le1 |
|- 0 <_ 1 |
| 101 |
100
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 102 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 103 |
7 102
|
syl |
|- ( ph -> 1 <_ N ) |
| 104 |
98 99 35 101 103
|
letrd |
|- ( ph -> 0 <_ N ) |
| 105 |
35 104
|
absidd |
|- ( ph -> ( abs ` N ) = N ) |
| 106 |
97 105
|
oveq12d |
|- ( ph -> ( ( abs ` 2 ) x. ( abs ` N ) ) = ( 2 x. N ) ) |
| 107 |
93 106
|
eqtrd |
|- ( ph -> ( abs ` ( 2 x. N ) ) = ( 2 x. N ) ) |
| 108 |
107
|
oveq1d |
|- ( ph -> ( ( abs ` ( 2 x. N ) ) ^ i ) = ( ( 2 x. N ) ^ i ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` ( 2 x. N ) ) ^ i ) = ( ( 2 x. N ) ^ i ) ) |
| 110 |
90 109
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( 2 x. N ) ^ i ) ) = ( ( 2 x. N ) ^ i ) ) |
| 111 |
110
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` ( ( 2 x. N ) ^ i ) ) x. ( abs ` ( B - A ) ) ) = ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) |
| 112 |
88 111
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( 2 x. N ) ^ i ) x. ( B - A ) ) ) = ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) |
| 113 |
86 112
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) = ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) |
| 114 |
113
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) = ( ( ( abs ` C ) ^ i ) x. ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) ) |
| 115 |
76
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` C ) ^ i ) e. CC ) |
| 116 |
45
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( B - A ) ) e. CC ) |
| 117 |
115 81 116
|
mulassd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) x. ( abs ` ( B - A ) ) ) = ( ( ( abs ` C ) ^ i ) x. ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) ) |
| 118 |
117
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) = ( ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) x. ( abs ` ( B - A ) ) ) ) |
| 119 |
115 81
|
mulcld |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) e. CC ) |
| 120 |
119 116
|
mulcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) x. ( abs ` ( B - A ) ) ) = ( ( abs ` ( B - A ) ) x. ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) ) ) |
| 121 |
115 81
|
mulcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) = ( ( ( 2 x. N ) ^ i ) x. ( ( abs ` C ) ^ i ) ) ) |
| 122 |
75
|
recnd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` C ) e. CC ) |
| 123 |
89 122 15
|
mulexpd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) = ( ( ( 2 x. N ) ^ i ) x. ( ( abs ` C ) ^ i ) ) ) |
| 124 |
123
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) ^ i ) x. ( ( abs ` C ) ^ i ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) |
| 125 |
121 124
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) = ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) |
| 126 |
125
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( abs ` ( B - A ) ) x. ( ( ( abs ` C ) ^ i ) x. ( ( 2 x. N ) ^ i ) ) ) = ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 127 |
118 120 126
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( ( ( 2 x. N ) ^ i ) x. ( abs ` ( B - A ) ) ) ) = ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 128 |
114 127
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( ( ( 2 x. N ) ^ i ) x. B ) - ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) = ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 129 |
80 128
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( abs ` C ) ^ i ) x. ( abs ` ( ( T ` ( ( ( 2 x. N ) ^ i ) x. B ) ) - ( T ` ( ( ( 2 x. N ) ^ i ) x. A ) ) ) ) ) <_ ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 130 |
70 129
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) <_ ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 131 |
8 27 46 130
|
fsumle |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) <_ sum_ i e. ( 0 ... ( J - 1 ) ) ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 132 |
31
|
recnd |
|- ( ph -> ( abs ` ( B - A ) ) e. CC ) |
| 133 |
125 119
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ... ( J - 1 ) ) ) -> ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) e. CC ) |
| 134 |
8 132 133
|
fsummulc2 |
|- ( ph -> ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) = sum_ i e. ( 0 ... ( J - 1 ) ) ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 135 |
134
|
eqcomd |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( ( abs ` ( B - A ) ) x. ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) = ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 136 |
131 135
|
breqtrd |
|- ( ph -> sum_ i e. ( 0 ... ( J - 1 ) ) ( abs ` ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) <_ ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 137 |
26 28 43 44 136
|
letrd |
|- ( ph -> ( abs ` sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( F ` B ) ` i ) - ( ( F ` A ) ` i ) ) ) <_ ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |
| 138 |
23 137
|
eqbrtrd |
|- ( ph -> ( abs ` ( sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` B ) ` i ) - sum_ i e. ( 0 ... ( J - 1 ) ) ( ( F ` A ) ` i ) ) ) <_ ( ( abs ` ( B - A ) ) x. sum_ i e. ( 0 ... ( J - 1 ) ) ( ( ( 2 x. N ) x. ( abs ` C ) ) ^ i ) ) ) |