Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem11.t |
|
2 |
|
knoppndvlem11.f |
|
3 |
|
knoppndvlem11.a |
|
4 |
|
knoppndvlem11.b |
|
5 |
|
knoppndvlem11.c |
|
6 |
|
knoppndvlem11.j |
|
7 |
|
knoppndvlem11.n |
|
8 |
|
fzfid |
|
9 |
7
|
adantr |
|
10 |
5
|
knoppndvlem3 |
|
11 |
10
|
simpld |
|
12 |
11
|
adantr |
|
13 |
4
|
adantr |
|
14 |
|
elfznn0 |
|
15 |
14
|
adantl |
|
16 |
1 2 9 12 13 15
|
knoppcnlem3 |
|
17 |
16
|
recnd |
|
18 |
3
|
adantr |
|
19 |
1 2 9 12 18 15
|
knoppcnlem3 |
|
20 |
19
|
recnd |
|
21 |
8 17 20
|
fsumsub |
|
22 |
21
|
eqcomd |
|
23 |
22
|
fveq2d |
|
24 |
17 20
|
subcld |
|
25 |
8 24
|
fsumcl |
|
26 |
25
|
abscld |
|
27 |
24
|
abscld |
|
28 |
8 27
|
fsumrecl |
|
29 |
4 3
|
resubcld |
|
30 |
29
|
recnd |
|
31 |
30
|
abscld |
|
32 |
|
2re |
|
33 |
32
|
a1i |
|
34 |
|
nnre |
|
35 |
7 34
|
syl |
|
36 |
33 35
|
remulcld |
|
37 |
11
|
recnd |
|
38 |
37
|
abscld |
|
39 |
36 38
|
remulcld |
|
40 |
39
|
adantr |
|
41 |
40 15
|
reexpcld |
|
42 |
8 41
|
fsumrecl |
|
43 |
31 42
|
remulcld |
|
44 |
8 24
|
fsumabs |
|
45 |
31
|
adantr |
|
46 |
45 41
|
remulcld |
|
47 |
2 13 15
|
knoppcnlem1 |
|
48 |
2 18 15
|
knoppcnlem1 |
|
49 |
47 48
|
oveq12d |
|
50 |
12 15
|
reexpcld |
|
51 |
50
|
recnd |
|
52 |
36
|
adantr |
|
53 |
52 15
|
reexpcld |
|
54 |
53 13
|
remulcld |
|
55 |
1 54
|
dnicld2 |
|
56 |
55
|
recnd |
|
57 |
53 18
|
remulcld |
|
58 |
1 57
|
dnicld2 |
|
59 |
58
|
recnd |
|
60 |
51 56 59
|
subdid |
|
61 |
60
|
eqcomd |
|
62 |
49 61
|
eqtrd |
|
63 |
62
|
fveq2d |
|
64 |
56 59
|
subcld |
|
65 |
51 64
|
absmuld |
|
66 |
37
|
adantr |
|
67 |
66 15
|
absexpd |
|
68 |
67
|
oveq1d |
|
69 |
65 68
|
eqtrd |
|
70 |
63 69
|
eqtrd |
|
71 |
64
|
abscld |
|
72 |
54 57
|
resubcld |
|
73 |
72
|
recnd |
|
74 |
73
|
abscld |
|
75 |
38
|
adantr |
|
76 |
75 15
|
reexpcld |
|
77 |
66
|
absge0d |
|
78 |
75 15 77
|
expge0d |
|
79 |
1 57 54
|
dnibnd |
|
80 |
71 74 76 78 79
|
lemul2ad |
|
81 |
53
|
recnd |
|
82 |
13
|
recnd |
|
83 |
18
|
recnd |
|
84 |
81 82 83
|
subdid |
|
85 |
84
|
eqcomd |
|
86 |
85
|
fveq2d |
|
87 |
30
|
adantr |
|
88 |
81 87
|
absmuld |
|
89 |
52
|
recnd |
|
90 |
89 15
|
absexpd |
|
91 |
33
|
recnd |
|
92 |
35
|
recnd |
|
93 |
91 92
|
absmuld |
|
94 |
|
0le2 |
|
95 |
32
|
absidi |
|
96 |
94 95
|
ax-mp |
|
97 |
96
|
a1i |
|
98 |
|
0red |
|
99 |
|
1red |
|
100 |
|
0le1 |
|
101 |
100
|
a1i |
|
102 |
|
nnge1 |
|
103 |
7 102
|
syl |
|
104 |
98 99 35 101 103
|
letrd |
|
105 |
35 104
|
absidd |
|
106 |
97 105
|
oveq12d |
|
107 |
93 106
|
eqtrd |
|
108 |
107
|
oveq1d |
|
109 |
108
|
adantr |
|
110 |
90 109
|
eqtrd |
|
111 |
110
|
oveq1d |
|
112 |
88 111
|
eqtrd |
|
113 |
86 112
|
eqtrd |
|
114 |
113
|
oveq2d |
|
115 |
76
|
recnd |
|
116 |
45
|
recnd |
|
117 |
115 81 116
|
mulassd |
|
118 |
117
|
eqcomd |
|
119 |
115 81
|
mulcld |
|
120 |
119 116
|
mulcomd |
|
121 |
115 81
|
mulcomd |
|
122 |
75
|
recnd |
|
123 |
89 122 15
|
mulexpd |
|
124 |
123
|
eqcomd |
|
125 |
121 124
|
eqtrd |
|
126 |
125
|
oveq2d |
|
127 |
118 120 126
|
3eqtrd |
|
128 |
114 127
|
eqtrd |
|
129 |
80 128
|
breqtrd |
|
130 |
70 129
|
eqbrtrd |
|
131 |
8 27 46 130
|
fsumle |
|
132 |
31
|
recnd |
|
133 |
125 119
|
eqeltrrd |
|
134 |
8 132 133
|
fsummulc2 |
|
135 |
134
|
eqcomd |
|
136 |
131 135
|
breqtrd |
|
137 |
26 28 43 44 136
|
letrd |
|
138 |
23 137
|
eqbrtrd |
|