Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem12.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
2 |
|
knoppndvlem12.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
knoppndvlem12.1 |
⊢ ( 𝜑 → 1 < ( 𝑁 · ( abs ‘ 𝐶 ) ) ) |
4 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
5 |
|
2re |
⊢ 2 ∈ ℝ |
6 |
5
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
7 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
9 |
6 8
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
10 |
1
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
11 |
10
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
13 |
12
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℝ ) |
14 |
9 13
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
15 |
|
1lt2 |
⊢ 1 < 2 |
16 |
15
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
17 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
18 |
17
|
eqcomi |
⊢ 2 = ( 2 · 1 ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → 2 = ( 2 · 1 ) ) |
20 |
8 13
|
remulcld |
⊢ ( 𝜑 → ( 𝑁 · ( abs ‘ 𝐶 ) ) ∈ ℝ ) |
21 |
|
2rp |
⊢ 2 ∈ ℝ+ |
22 |
21
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
23 |
4 20 22 3
|
ltmul2dd |
⊢ ( 𝜑 → ( 2 · 1 ) < ( 2 · ( 𝑁 · ( abs ‘ 𝐶 ) ) ) ) |
24 |
19 23
|
eqbrtrd |
⊢ ( 𝜑 → 2 < ( 2 · ( 𝑁 · ( abs ‘ 𝐶 ) ) ) ) |
25 |
6
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
26 |
8
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
27 |
13
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) ∈ ℂ ) |
28 |
25 26 27
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) = ( 2 · ( 𝑁 · ( abs ‘ 𝐶 ) ) ) ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 · ( abs ‘ 𝐶 ) ) ) = ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) |
30 |
24 29
|
breqtrd |
⊢ ( 𝜑 → 2 < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) |
31 |
4 6 14 16 30
|
lttrd |
⊢ ( 𝜑 → 1 < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) |
32 |
4 31
|
jca |
⊢ ( 𝜑 → ( 1 ∈ ℝ ∧ 1 < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) ) |
33 |
|
ltne |
⊢ ( ( 1 ∈ ℝ ∧ 1 < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ≠ 1 ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ≠ 1 ) |
35 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
36 |
35
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) = 2 ) |
37 |
36 30
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 + 1 ) < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ) |
38 |
4 4 14
|
ltaddsubd |
⊢ ( 𝜑 → ( ( 1 + 1 ) < ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ↔ 1 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |
39 |
37 38
|
mpbid |
⊢ ( 𝜑 → 1 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) |
40 |
34 39
|
jca |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) ≠ 1 ∧ 1 < ( ( ( 2 · 𝑁 ) · ( abs ‘ 𝐶 ) ) − 1 ) ) ) |