Metamath Proof Explorer


Theorem knoppndvlem1

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem1.n ( 𝜑𝑁 ∈ ℕ )
knoppndvlem1.j ( 𝜑𝐽 ∈ ℤ )
knoppndvlem1.m ( 𝜑𝑀 ∈ ℤ )
Assertion knoppndvlem1 ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 knoppndvlem1.n ( 𝜑𝑁 ∈ ℕ )
2 knoppndvlem1.j ( 𝜑𝐽 ∈ ℤ )
3 knoppndvlem1.m ( 𝜑𝑀 ∈ ℤ )
4 2re 2 ∈ ℝ
5 4 a1i ( 𝜑 → 2 ∈ ℝ )
6 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
7 1 6 syl ( 𝜑𝑁 ∈ ℤ )
8 7 zred ( 𝜑𝑁 ∈ ℝ )
9 5 8 remulcld ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ )
10 5 recnd ( 𝜑 → 2 ∈ ℂ )
11 8 recnd ( 𝜑𝑁 ∈ ℂ )
12 2ne0 2 ≠ 0
13 12 a1i ( 𝜑 → 2 ≠ 0 )
14 0red ( 𝜑 → 0 ∈ ℝ )
15 1red ( 𝜑 → 1 ∈ ℝ )
16 0lt1 0 < 1
17 16 a1i ( 𝜑 → 0 < 1 )
18 nnge1 ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 )
19 1 18 syl ( 𝜑 → 1 ≤ 𝑁 )
20 14 15 8 17 19 ltletrd ( 𝜑 → 0 < 𝑁 )
21 14 20 ltned ( 𝜑 → 0 ≠ 𝑁 )
22 21 necomd ( 𝜑𝑁 ≠ 0 )
23 10 11 13 22 mulne0d ( 𝜑 → ( 2 · 𝑁 ) ≠ 0 )
24 2 znegcld ( 𝜑 → - 𝐽 ∈ ℤ )
25 9 23 24 reexpclzd ( 𝜑 → ( ( 2 · 𝑁 ) ↑ - 𝐽 ) ∈ ℝ )
26 25 5 13 redivcld ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) ∈ ℝ )
27 3 zred ( 𝜑𝑀 ∈ ℝ )
28 26 27 remulcld ( 𝜑 → ( ( ( ( 2 · 𝑁 ) ↑ - 𝐽 ) / 2 ) · 𝑀 ) ∈ ℝ )